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1.1 PREFACE

This atlas of Woodford Shale outcrops in south central Oklahoma attempts to collate various
studies, including unpublished theses, into a single document. Chapters 2, 3, 4, and 5 cover distinct
geographic domains that represent a proximal to distal transect of the Latest Devonian to Earliest
Mississippian depositional system in this region of southern Laurentia. Chapter 6 discusses some
yet to be answered research questions in a global context. This atlas is not a field trip guidebook
per se. It is a menu from which different configurations of field trips and seminars can be
constructed. Examples of several different field trips are given in Chapter 7. This atlas has a
modular format so that future additions, updates, and corrections can be made without wholesale
revision of the entire document.

Our work on outcrops of this world-class petroleum source rock began in 2020 partly to escape
the tedium of the Great Pandemic Lockdown. Better to see the rocks than just read about them.
This time also coincided with a contraction of Woodford Shale research that followed the passing
of Dr. Roger Slatt (OU Woodford Consortium) and the retirement of Brian Cardott (Oklahoma
Geological Survey), which also coincided with a sharp drop in Oklahoma’s rig count driven by
low commodity prices. As our studies progressed, we realized were some significant differences
in the interpretation of the Woodford Shale. We also realized the decades of studies represent the
building blocks that can be used to frame Laurentia-scale studies to improve our understanding of
the paleogeographic and palacoceanographic evolution during the end Devonian mass extinctions
as the Rheic sea narrowed during the assembly of Pangea.

Most of the outcrops visited are on private land. We are most grateful to each of those landowners
who granted access to their property: Jessie Wyche, Tommy and Linda Chaffin, Bill Lance, Sarah
Jolly, and Terry Maris. We would like to acknowledge Carl Symcox, Austin McGlannan, and
Galen Miller for their assistance in the field work. We are grateful to Nick Hayman, Director of
the Oklahoma Geologic Survey editorial suggestions and for partially funding of our analytical
program. Carter Lewis of the Oklahoma Geologic Survey provided additional proof-reading
suggestions. Although there are undoubtedly a few typographic errors and passages that could be
improved, we believe these should not detract from the utility of this atlas. Lastly, we acknowledge
that this guidebook would never have been completed without the forbearance and support of our
spouses.

Andrew Cullen
David Hull
November 2023



1.2 INTRODUCTION (REGIONAL SETTING & GLOBAL CONSIDERATIONS):

The Woodford Shale of southern Oklahoma is known from outcrops in the Arbuckle Mountains
region and extensive subsurface data from the Anadarko, Arkoma, and Ardmore basins. These
basins are contemporaneous with other basins of southern Laurentia that also have sections of
similar age organic-rich mud rocks (Figure 1.2.1).

The Woodford Shale is principally known as a world-class siliceous marine petroleum
source rock (Cardott and Comer, 2020.) with geomechanical properties suitable for exploitation as
an “unconventional” reservoir (Slatt et al., 2018). For the sake of brevity, we shall simply use the
name Woodford hereafter rather than its full stratigraphic name. The Woodford is correlative to
the New Albany Shale in the Illinois basin and outcrops of the Chattanooga Shale in Arkansas,
Tennessee, and Kentucky. The Arkansas Novaculite is also correlative with the Woodford (Figure
1.2.2). The Arkansas Novaculite and older Paleozoic units exposed in the Ouachita fold-thrust belt
are interpreted as the deepwater facies of equivalent shallow marine rocks exposed the Arbuckle
Mountains- respectively known as the Ouachita and Arbuckle facies (Gatewood and Faye, 1991).
The depositional interval of the Woodford encompasses 1) The development of widespread anoxia
in the epieric seas southern Laurentia with the resultant voluminous organic carbon sequestration
and 2) The transition from greenhouse to icehouse conditions marked by rising and then falling
eustatic sea level and the development of early Mississippian glaciation.

Conodont biostratgraphy establishes that the Woodford ranges in age from the late Frasnian
through the Famennian and into the early Tournasian spanning Late Devonian and earliest
Mississippian (Over, 1990, 1992). The rapid expansion of land plants in the Devono-Mississippian
interval is arguably one of the most important developments in Earth’s Phanerozoic evolution
leading to a precipitous drop in atmospheric CO2 (Algeo and Strickler, 1988.). The expansion of
land plant was accompanied by increasingly deeper and complex roots systems that led increased
chemical weathering and the development of deeper soil profiles (Figure 1.2.3) both of which
affected the delivery of organic matter and weathered bedrock to the shallow marine shelves. The
increase in the delivery of organic matter may have led to an increase in levels of eutrophication
on the shallow marine shelves helping to produce oxygen starved bottom waters favoring
sequestration of large volumes of organic carbon (Balter et al., 2017).

The Woodford spans the Famennian-Frasnian (F/F) and Devonian-Carboniferous (D/C)

mass extinctions events. Both extinction events dramatically reduced biodiversity of shallow



marine life, but D/C extinctions stand out for the major reduction in terrestrial forests. These forests
were particularly concentrated in the Appalachian region of Laurentia and experienced massive
wildfires in the Famennian (Lu et al., 2021). The Woodford has large, silicified trunks of
Archaeopteris preserved at several localities (Sections 2.1 and 2.4). An influx of plant-sourced
phosphorus into the shallow marine environment may have triggered the widespread precipitation
of phosphate nodules near the D/C boundary in the Woodford and New Albany/Chattanooga shales
(Figure 1.2.2 and Section 6.3).

Proposed F/F and D/C extinction mechanisms include changes in global sea-level, global
temperatures, and ocean circulation patterns episodes of marine anoxia, asteroid/comet impacts;
large igneous province volcanism, and supernova cosmic ray bombardment (MacLeod, 2013;
Bond and Grasby, 2018). These mechanisms are not mutually exclusive, and some may be
regarded as secondary feed-back responses. Sedimentological and geochemical expression of these
extinction events, which have been studied at numerous locations globally (e.g., Germany, Poland,
Morocco, Uzbekistan, Vietnam), show an increase organic carbon preservation, negative
deflection in 8'3C secular isotope trends, elevated Hg levels, and changes in pyrite framboid
abundance & (Rackocinski et al., 2020; Carmichael et al., 2021. Thus, in addition to its importance
from a petroleum systems perspective, the Woodford contains critical biogeochemical information

on climate evolution and mass extinctions that need studied and integrated into global studies.

Section Key Outcrops Latitude Longitude
2.1 (Wyche Quarry 34°40'21"N 96°38"W
2.2 |Haas G 34°40'48"N 96°39'53"W
2.3 (Woodford Log 34°40'43"N | 96°39'54"W
3.1 [Hunton Quarry Anticline 34°25'36"N 97°1'52"W
3.2 |Heart of the Arbuckles 34°26'38"N 97° 7'41"W
3.3 [I35-North 34°26'38"N | 97°41.91"W
3.4 |YMCA / Camp Classen 34°27'40"N | 97°9'5.54"W
3.5 (I-35 South (Last Ridge) 34°21'6"N 97° 8'56"W
4.1 |McAlister Cemetery Quarry 34°4'39"N 97° 9'19"W
5.1 (Wapanucka 34°22'45"N 96°20'04"W
5.2 |Scratch Hill 34°22'32"N 96°06'35"W

Table 1.1.1 Location of key Woodford outcrops covered in this atlas.
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Figure 1.2.1 a) Oklahoma geological provinces (Northcutt and Campbell, 1995); and key North

American basins (light gray b) Southern Oklahoma geological features. Outcrop locations: filled
biostratigraphy, open triangles-other outcrops with biostratigraphy. Interstate-35 is in blue dashed

red circles-outcrops reviewed with biostratigraphic, open circles-outcrops reviewed lacking
double line. A-A’ cross section (figure 1.2.5)
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Figure 1.2.2 Intra-basin stratigraphic correlation chart with long-term eustatic curve (after
McGlannan et al., 2022). Dashes in Woodford mark clay-rich middle member. Blue patterned

circles in Upper Woodford denote phosphate nodules.
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Figure 1.2.3 Evolutionary deepening of Paleozoic root systems (Retallick, 2022)

Woodford outcrops from the Lawrence Uplift through the Arbuckle Mountains to the Criner Hills
uplift in the Ardmore Basin are a 100mi/162km long basin ward transect into progressively deeper
water (Figure 1.2.4). The Arkansas Novaculite outcrop at Scratch Hill represents the deepwater
Ouachita facies.

Key Outcrops 1. Wyche Quarry, Hass-G, CR-1620, Woodford Log, Pyrite balls (C-1 is Current #1 core hole)
2. 1-35 North, Hunton Quarry anticline, Heart of the Arbuckles, Camp Classen / YMCA spillway
3. 1-35 South
4.  MCQ-McAlister Cemetery Quarry

Post Woodford [ ] ¢
Woodford o~ 1mi | Ve
A Pre-Woodford E 2.5km 3ss
- 1.5mi @_‘ e
MCQ ®@ S :/
Il Faul Alhoso Fault
Criner Hills Caddo Field Arbuckle Hunton Stonews FautLawrence b
Anticline Anticline Uplift

Figure 1.2.4 N-S regional schematic structural cross section on figure 1.2.1 showing principal
Woodford outcrops from the Lawrence uplift to the Ardmore basin.



Lawrence Uplift: The Lawrence uplift is a relatively undeformed horst block bounded by the

steeply-dipping to vertical Alhoso and Stonewall faults (Figure 1.2.5). Gently dipping (<5°)
Woodford Shale is at or near the surface across a NW-SE striking outcrop pattern is exposed in
numerous shallow shale pits that afford nice views of bed tops. Partial vertical sections are exposed
along the banks of Jack Fork Creek and in the Wyche Quarry. Additionally extensive work has

been done on two shallow cores, most notably the Wyche #1, that penetrated the entire Woodford

section.
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Figure 1.2.5 Geological map of the Lawrence uplift and cross section (Stanley and Evans, 2014,
Ham, 1973). Key outcrops 1) Wyche Quarry 2) Hass-G 3) County Road 1620 (Woodford Log).
Other locations in small yellow circles.
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Arbuckle Mountains / Criner Hills: The Arbuckle Mountains and Criner Hills sections occur

on the anticlinal limbs of fault propagation folds (Figure 1.2.6). These structures formed during
Pennsylvanian-age basin inversion during the assembly of Pangea. Roadcuts expose excellent
cross-sectional views of the Woodford, bed tops are poorly exposed. Owing to steep dips outcrops
along road cuts are relatively limited. At the McAlister Cemetery Quarry a full section of
Woodford on the NE limb of the Overbrook anticline in the Criner Hills has been bladed off and
is well exposed.

SW NE
KF
IPd
(ot Ov
Walker, 2006, o
~4mino VE
Washita Valley Fault]
£ad Trtet s Aricre WASHITA VALLEY SYNCLINE
. ARBUCKLE ANTICLINE ) VL CREEK SYNCLINE
‘6 e Ardmore Basin, %4,3,2,10 6
Caddo Field springer Field fir T WASHITA RHEH1 |
o e ——

=

Figure 1.2.6 Geological map of part of the Arbuckle Mountains (Ham, 1958) with regional cross
section (Miller and Cullen, 2019) and cross section through MCQ (McAlister Cemetery Quarry).
1) Hunton Quarry Anticline, 2) Heart of the Arbuckles, (SH-77D) 3) 1-35S, 4) Camp Classen-
YMCA Spillway, 5) McAlister Cemetery Quarry.



Ouachita Mountains: At Scratch Hill near Atoka OK, there is an excellent exposure of the

Arkansas Novaculite (Section 5.2) which is considered as deepwater facies equivalent to the
Woodford Shale. The Scratch Hill outcrop lies along Black Knob Ridge in the hanging wall of the
Choctaw fault (Figure 1.2.7). The Choctaw fault is the frontal thrust of the Ouachita fold-thrust
belt. The fault represents the structural contact between shallow and deepwater rocks of the
Arbuckle and Ouachita facies, respectively. There is at least 100mi of lateral displacement along
the Choctaw fault (Arbenz, 2008) that must be accounted for when reconstructing Late Devonian

deposition environments and paleoceanography.

Scratch Hill

ﬂ ~

10
km  No vertical exaggeration

Figure 1.2.7 Regional structural cross section at Scratch Hill showing thrusting of the deepwater
Ouachita facies units over the shallow water Arbuckle facies units along the frontal Choctaw fault.
The heavy dashed yellow line represents the approximate top of the Woodford in the footwall.
(modified from Arbenz, 2008)
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1.3.1 Woodford Geological Overview: The Woodford was deposited during the waning stages
of the much larger Oklahoma Basin (Johnson et al., 1989) including the Southern Oklahoma
Aulacogen that formed following Cambrian-age rifting Rodinian supercontinent (Shatski, 1946;
Hoffmann et al., 1974, Wickham, 1978; Keller and Baldwin, 2008). During Pennsylvanian

orogenesis related to the assembly of Pangea and closure of the Rheic Sea (Golonka, 2020; Tian

et al., 2022) the aulacogen was inverted and segmented in the present-day Anadarko, Arkoma,
Ardmore, and Marietta basins (Donovan, 1986; Perry, 1989; Figure 1.3.1). It is generally agreed
that the structures which ultimately separated these sub-basins were present but not prominent at
the time of Woodford deposition nor were they first-order drivers in the development of the

Woodford source rock (Gay, 2003; Cardott and Comer, 2020).

/ (
MISSOURI *.

N
St.Francpis b
Mountqigs /\,
= ==

=

=7
|~/
S

Southe r\
Midcontinent

& n
~o°\ J
‘:b\ -
{. a
Q
Ma I “ I‘
Teov8® =
e o ol
3 ‘\ - 1 in
‘ 3
(| »
[l ¢ ) a
‘ ~
[ Yu Z =
/
[ & [R—
. 4
o 4] "
|3 4
‘:;‘ P %m &
£
X

Figure 1.3.1 Map indicating major Early to Middle Paleozoic features of the Southern
Midcontinent (Johnson et al., 1989). Modifications include key Pennsylvanian basement-rooted
faults related to inversion of the Southern Oklahoma Aulacogen (SOA) in red lines. Inset is a
stratigraphic column simplified from figure 1.2.2.

10



In the Late Devonian to Early Mississippian the present-day midcontinent was an epeiric sea with
a wide shelf and long low gradient ramp that extended southward into the Rheic Ocean. Plate and

paleogeographic reconstructions show the Rheic Ocean was relatively wide with strong seasonal

wind variations potentially influencing the delivery of fines to the margin (Figure 1.3.2).
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The Woodford is extensively studied. Since the earliest work of Taff (1902) more than 350

publications and student theses relating to the Woodford Shale have been completed; see the
bibliography of Cardott and Comer (2020). These studies fall into 4 broad themes:

lithostratigraphy, sequence stratigraphy, biostratigraphy, and petroleum systems/ organic

geochemistry. The following geological framework is derived primarily from the summaries and
reviews of Slatt et al., (2018) and Cardott and Comer (2020):

1.

The Woodford has a thickness of Oft -700ft and can be divided into 3 basic subdivisions (Upper,
Middle, Lower) on the basis petrophysical measurements and different percentages of its
dominant lithofacies: organic-rich silicic mudrock and silicic shale, silty shale and chert (Figure
1.3.2aand 1.3.3b).

. Relative to the more silicic Upper and Lower members, the Middle Woodford is more clay-rich

and ductile which consistent the long term eustatic curve that implies the maximum flooding
surface in the Middle Woodford (see figure 1.2.2).

. The Woodford is a world-class oil prone source rock with a broad range of thermal maturity

related largely to maximum burial (Figure 1.3.3c). Organic petrographic shows an abundance
of marine algae which is consistent with the modified van Krevlen diagrams from RockEval
data.

The Frasnian-Famennian boundary is near the basal Lower Woodford. The Devonian-
Carboniferous boundary is near the top of the Upper Woodford. Thus, most of the Woodford is
Famennian in age (Figure 1.3.3a, see discussion of biostratigraphy below).

. The Woodford was deposited as a transgressive systems tract (TST) over a major unconformity

(sequence boundary) on the Hunton Group carbonates that were karsted and incised over a

~20myr interval prior to deposition of the Woodford (Figures 1.3.3a, and 1.2.2).
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1.3.2 Woodford Biostratigraphy and Key Surfaces:

Cardott and Chaplin (1993) and Cardott and Comer (2020) provide a good overview of the biota
and fauna recovered from the Woodford. The Woodford has a rich microfossils assemblage that
include conodonts, radiolaria, sponge spicules, algae, acritarchs, and pollen. Macrofossils are rare
but include brachiopods, arthropods, and cephalopods. Additionally, large silicificed Callixylon
trunks of the progymnosperm Archaeopteris tree occur have been documented at several outcrops
(see sites 2.1, 2.3 and review of Suneson, 2010). Trace fossils and burrows are rare and commonly
dwarfed/ stressed where present. The bioturbation tends to occur in the lighter colored mudrocks
indicative of episodes of more oxygenated bottom waters. Conodont biostratigraphy (Table 1.3.1)
provides the best chronostratigraphic framework to constrain the age of contacts, extinction
boundaries and the maximum flooding surface in the Woodford (Hass and Huddle, 1965; Over,
1990’ Over 1992).

Basal Contact: The Woodford was deposited over of the Hunton Group carbonates along a time
transgressive unconformable contact that becomes younger up dip (Figure 1.3.4). With the
exception of an early Frasnian age (lower rhenana conodont zone) on the Lawrence uplift (Over
1990), the age of the basal Woodford is poorly constrained. However, no Givetian conodonts have
been identified in the Woodford literature. Thus, the Lower Woodford member is considered as
early Frasnian in age. Studies and mapping of the Woodford-Hunton contact (Amsden, 1975;
Amsden and Rowland, 1967) show that the Hunton Group carbonates were eroded and karsted
during a ~20myr interval prior to deposition of the Woodford and the greater Taghenic onlap
sequence. Local mapping of 12 Woodford intervals on the Cherokee Platform shows that the
unconformity has 100ft of relief (McCollough, 2017). Although the low areas filling during the
ensuing sea level rise are referred to as incised valleys, the karsted nature of the surface and a lack

of well identified fluvial systems suggest that dissolution valleys may be a better genetic term.

14
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Figure 1.3.4 Regional gamma ray stratigraphic section, MFS as datum, showing progressive onlap
of basal Woodford and stacking of Woodford parasequences in transgressive and high stand
systems tracts (McCollough, 2012).

Frasnian-Famennian Boundary: The Frasnian-Famennian boundary is defined by the first

appearance of Pa triangularis and of Pa del delicatula (Over, 1990; see Table 1.3.1). From these
studies the F/F boundary is known from 5 widely spaced locations from the Lawrence uplift to
McAlister Cemetery Quarry (Table 1.3.2) The thickness of the Frasnian section ranges from 53ft
at the YMCA/Hass-B location to less than 1ft at Burning Mountain in the Arbuckle Mountains and
Hass-En location on the Lawrence uplift. The range in thickness is consistent with documented
onlap and relief on the Hunton Group below the basal Woodford sequence boundary. An
alternative method for placement of the F/F boundary using chemostratigraphy was proposed by
Turner et al., (2016), who was working at the Hunton Quarry Anticline (Section 3.1) where there
is no biostratigraphic control. This method places the “Chemostratigraphic FF Boundary” above
the maximum flooding surface which is 80-90ft higher in the section than at nearby outcrops where
the F/F boundary is biostratigraphically determined (Figure 1.3.5 and Table 1.3.2). Therefore,
unless calibrated by co-located conodont biostratigraphy, we strongly object using
chemostratigraphic data to determine the F/F boundary.
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Locations Frasnian Carboniferous References
Thickness m Thickness m

Hass-G covered 0.6 Hass and Huddle, 1965; Over, 1992

Weldon Type covered 0.6 Over, 1992

Dump Draw Ryan Shale Pit covered top truncated |Over, 1992

Hass En 0.21 covered Hass and Huddle, 1965; Over, 1990

Wyche Pit & Wyche-1 26 no data Turner et al., 2016; Molineres et al., 2019

Goose Creek covered 0.8 Over, 1990

Ebby Dam covered 0.5 Over, 1990

Burning Mtn 0.2 covered Over 1990

Hunton Quarry Anticline 50 no data Turner et al., 2016

Hass-B YMCA 15.7 covered Over, 1990; Crick,et al., 2002

Hass-A Henry House Creek 3.3 covered Hass and Huddle, 1965; Over, 1990

Speake Ranch 61 30 Molinares et al., 2019

I-35 South covered 4.5 Over, 1992; Kondas 2018

McAlister Cemetery Quarry 16 0/2? Over, 2002; , Cullen, 2018

McAlister Cemetery Quarry 65 no data Molinares et al., 2019

Wapanucka Shale Pit covered 55/30 Over, 1992; Puckette et al., 2013

Table 1.3.2 Key sections where F/F and D/C boundaries have been established. Green highlights
are conodont constrained distances, yellow highlights are chemostratigraphically constrained

distances.

\| Chemostratigraphic

s Hunton Anticline Quarry Wyche Quarry E. N
E T HST g
2 . _—— — Tl LE é FF Boundary
1 = ™
: N e f———" = : MFS
¥ | 3
= N\ N\
1" g “ D
£l I o] ¢
F/F @ YMCA 7 Lty —
8mi WNW o 2 — T
53ft above HNTN 57 ) ;/SF @ HassE —
N y .5 mi west
0.067ft above HNTN\NFQ
HAQB Tajectory

Over, 2020

Figure 1.3.5 Chemosequence Stratigraphic correlations from Turner et al., (2016). Datum is the
maximum flooding surface (MFS). Yellow text denotes nearest F/F boundary locations and
distances to sections displayed (Over, 1990; Crick et al., 2002).
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The Maximum Flooding Surface: The maximum flooding surface (mfs) lies within the Middle

Woodford and is defined and mapped from wireline logs, particularly from the gamma ray and
density logs. There may be small differences in the precise positioning of the mfs depending on
different geologists’ weighting and interpretation of the different log curves. Even considering
this uncertainty the mfs is probably the most consistent and widely mapped intra-Woodford pick.
In measured outcrop the handheld gamma ray is used to position the mfs. As noted above the mfs
is closely associated with the Chemostratigraphic FF Boundary of Turner et al., (2016); low
continental input (Zr, Ti) and higher redox sensitive metals (U, Mo). Considering the
unconformities at the top and base of the Woodford, we consider the mfs as the most reliable

stratigraphic datum for flattening regional cross sections.

The Devonian-Carboniferous Boundary: On the basis on conodont biostratigraphy the Devonian-

Carboniferous (D/C) boundary has been determined at 7 locations within the study area. This
boundary was primarily defined by the first appearance Siphonodella sulcate and the last
appearance Palmatolepis gracilis gracillis (Over, 1992; Table 1.3.1). The precise position of the
D/C boundary at these outcrops may eventually be shifted to account for proposed revisions in
global Famennian conodont zonations which emphasize assemblages (zones) of first appearances
(Spallata et al., 2017). The D/C boundary is well constrained at 5 locations on the Lawrence uplift
(Table 1.3.2). With the exception of the Wapanucka section in the Arkoma basin (Section 5.1), the
Mississippian/Tournasian section of the Upper Woodford is thin and may be truncated at the
Wyche Quarry (Section 2.1) and the McAlister Cemetery Quarry (Section 4.1). The D/C boundary
is well constrained at the 1-35S roadcut and is supported by palynology data (Kondas et al., 2016).

Top Woodford Sequence Boundary: The relationship between the top of the Woodford and

overlying Mississippian strata is complex. Although there is no evidence for subaerial exposure
the combination of non-deposition and evidence for submarine erosion at different locations
strongly suggests the presence of a sequence boundary associated with the early Tournasian
lowstand. On the Lawrence uplift the pre-Welden shale and Welden Limestone represents an
extremely condensed Kinderhookian to Osagean section. In the Arbuckle Mountains and Ardmore
basin, given current biostratigraphic data, there is an ~11myr gap below the influx of siliciclastic-

carbonate mass flow deposits on the Sycamore Limestone submarine fans (Figure 6.1.5). The
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limestones and greenish shales of the earliest Mississippian interval appear to record period of oxic

bottom waters before a return to more reduced conditions represented by the deposition of the

bituminous Caney Shale during the subsequent transgression.

a)

Ma
3181

333

340
348
359.2

3745

[ Lower

Branch Mbr,

[e]
2
&
hloso Mbr. | Delaware Creek Mbr. | Sand

I——_A -

Lawrence Uplift

’ Boardman & and Pulckette (2006)

$

3
3
o
<
1]
H
2

Meramec

slope

30

Intra-Sycamore lobes >20m

35

Top

40 45

Arbuckle
Mountains

3
1 South Arbuckle Mts. oF | 225
| Ardmore Basin swinger | 53 | 325
H Formation H 2
2.
it g
= Formation ol §
»3 2
25 2
55
] 3
g ¢
§§ Caney Shale .
o I
4 z
== ¥1 &
vd | &
Sycamore = z
Limestone 5 £
= g
2
3
A o8 L
ki
Y H g
£ i
x| §3
»5 | %%
g
g8 3
£ H
F
Woodford N
Shale
' 25km 20
i
Cullen (2021)

500
450
400
350
300
250
200
150
100

ft 0

135-5
(3.5)

Basal nodule lag

Covered/faulted

= il L T

Hass-G
(2.2)

(5.1)

Wapanucka NE

Figure 1.3.6 a) Time-stratigraphic correlation from the Lawrence uplift to the Ardmore basin
(Boardman and Puckette, 2016) b) lithostratigraphic correlations c) Paleogeographic map showing
confinement of Sycamore to the Ardmore basin and incipient uplift of the Nemaha Ridge (Cullen,
2021).
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1.3.3 Woodford Lithofacies: Over the prior decades various workers studying outcrops and cores
have defined up to 12 different lithofacies for the Woodford (Table 1.3.3). The diversity in these

proposed lithofacies reflect differences in parameters such as texture, color, degree of lamination,
weathering traits, diagenetic features, XRF elemental data, and whether thin petrography was used
to augment hand sample descriptions. We have set aside some of these variables to layout a
relatively simple field-based facies scheme. Whilst there may be inherit problems with this
approach as certain diagenetic features - notably pyrite, phosphate, and glauconite- are treated as
features within the facies - these can supplemental descriptors to aid a better understanding to the
overall framework. We find that Ruppel’s (2016) shale depositional model (Figure 1.3.7) is of
great utility when applied to the Woodford as done by (Ekwunife, 2017).

Author Yr. |#facies Descriptions / Definitions Location (Section) Lat Long
Defined lihologic intervals of laminated, fissile, to massive Si-mudrock 34°27'40.83"N
Aufill 2007 5 YMCA/C Cl 3.4
ur and corresponding chert e e B4 97° 9'5.54"W
. . . . . . . 34° 4'39.43"N
Serna-Bernal 2014| 4  |Si-Shale, Si-siltstone, Laminated chert, Laminated fine-xIn dolomite, |McAlister Cemetery Quarry (4.1) 97° 919 30"W
Black laminated mudrock, Black massive mudrock, Laminate i 34°58'43.67"N
eBelliaig 20t - mudrock, Massive mudrock, Siliceous siltstone, Calcareous siltstone, YRR LI Il 97° 4'0.39"W
Siliceous mudrock, Siliceous shale, Calcareous mudrock, Siliceous 34°40'43.17"N
Turner er al 2015 8 ! / ’ Wyche Core (2.1
urnerera shale w/ PO, Siliceous-argillic mudrock, argillic mudrk w/ detrital gtz. ye ore (2.1) 96°39'53.96"W
Arillaceous shale, Siliceous shale, Brown siliceous mudstone, Siliceous 34°22'39.55"N
Galvi 2017 7 ’ ! ! Speake Ranch (3.6
aws mudstone, chert, Siliceous dolomitic shale, Dolomitic mudstone e IR (EHeY 97°20'10.03"W
- - - 34°21'6.83"N
Becerra- Rondon|2017| 4  |Siliceous shale, Chert, Dolo-mudstone, Siliceous domolitic mudstone  {135-S WDFD (3.5) 97° 8'56.39"W
. Clay shale, mud shale, clay-mud shale, Siliceous mudshale, Siliceous X 34°4'39.43"N
B 2018 8 mudstone, chert, Dolomitic -mudstone, bleeched rock WY AT IEr Cameiany Qe (.1) 97°9'19.30"W
Siliceous mudstone, Siliceous shale, Black chert, Arillaceous shale, i . 33°43'33.79"N
Brit 2019 6 Maritetta Basin, TX (4.2 - "
rito Green clayst, Dolomitic mudstone aritetta Basin (4.2) 96°45'33.68"W

Table 1.3.3 Comparison of different Woodford lithofacies defined by different authors

Ruppel defined 4 interfingering facies: 1) land derived siliciclastics, 2) argillaceous mudrock, 3)
highly siliceous mudrock, and 4) siliceous ooze/chert. Spatially these facies, one through four,
represent a basinward decrease in terrestrially derived clay and silt and a concomitant increase in
the percentage of intrabasinal siliceous radiolarian tests that are prone to early diagenesis. The
extremely low depositional gradient means that even small changes in sea level can drive large
lateral shifts in facies. From Walther’s Law it follows that the lateral interfingering of adjacent
facies is expressed vertically as interbedded brittle-ductile couplets intermixing petroleum source
rocks with petroleum reservoir rocks that are both critical in making the Woodford Shale a prolific

unconventional reservoir (Slatt and Abousleiman, 2011).
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Our model, like other variants, interprets facies changes largely as a function of fluctuations in sea
level across the broad flat shelf of the Oklahoma Basin’s epeiric sea while omitting significant

nuances.

These facies models do a good job at the regional scale but are less effective when dealing with
more localized or temporal factors (Figure 1.3.9) including paleotopography (Kvale, 2014; Cardott
and Comer, 2022), restriction, sediment supply, antecedent structure, differential compaction and
temporally changing atmospheric-oceanographic variables (wind direction, wind speed, ocean
bottom currents in relation the Eckman effect and seasonality of surface winds upwelling (Wignall,
1994). Further work on these temporal and local parameters is likely to yield insights on the
processes controlling: 1) the distribution of phosphate & controls on nodule morphology, 2) the
varied concentration pyrite, 3) development of euxenic episodes and 4) drivers of mass extinction

events.

Facies Descriptions: (see Figures 1.3.7 and 1.3.8)

Land Derived Siliciclastics: This facies is found exclusively near the basal Woodford contact.
Brito (2019) notes it is 66% clay and 27% tectosilicates. The facies is commonly bioturbated/
unlaminated and very low in TOC (Brito offers no value but <1% where described). It is very
ductile due to the high clay. This basal succession is present McAlister Cemetery Quarry (Section
4.1) and Speake Ranch (Section 3.6). This facies is commonly described at the base of the
Woodford, regardless of which part is onlapping the underlying rock. In places it is siltier and
related to incised valley-fill e.g., the Misner sandstone, but this is localized and likely represents a
pre-transgression erosional stratigraphic remnant at the base of the Woodford. Argillaceous shales
of this facies can weather green and papery on the outcrop and these are not necessarily the land
derived claystones described here, however, with a bit of digging fresh rock often proves to be
dark, laminated, and relatively organic-rich (figure 1.3.8c).

Argillaceous Mudrock: Brito describes argillaceous mudrocks as 40% clay and 40%
quartz+feldspar with TOC between 7-10% but this can be less outside of Brito’s study area. The
TOC is algal-dominated and tasmanities cysts are abundant. Pyrite can be abundant in these rocks,
both nodular and framboidal. These facies are commonly laminated but have been identified to be
slightly bioturbated with nerities traces or dwarfed ill-formed trace fossils. This facies is often the

“ductile” component in the brittle ductile couplets. The quartz is mostly detrital grains and does
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b) Brito’s (2019) facies on ternary coupled with our simplified facies scheme. c)

not contribute much to lithifying cement. As such compaction can destroy porosity preventing
these rocks from contributing unconventional reservoir rock but they can be excellent source rocks.

Figure 1.3.7: a) Adaption of Ruppel’s (2016) clastic shale system, showing positions of endpoint

locations.
Weathering style (Ekwunfe, 2017) with Ruppel’s facies in colored stars.
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Argillaceous mudrocks dominate the Lower and Middle Woodford and its qualities can vary
significantly due to its broad depositional range. It often weathers poorly and can be papery or
fissile (Figure 1.3.8c).

Siliceous Mudrock: Distal to the area dominated by argillaceous mudrock deposition siliceous
mudrock is found. This facies tends to have substantially more intrabasinal particles than
previously discussed facies. The facies is commonly 60-70% quartz+feldspar with 20-30% clay
and 4-8% TOC (Figure 1.3.8b). This facies is almost always laminated and bioturbation is
exceptionally rare. If the facies is massive it is more than likely homogenously laminated. Pyrite
can be common in these rocks. The quartz can be either detrital grains or authogenic/biogenic in
the form of radiolarians. As such there can be enough cement to prevent compaction without
occluding porosity. This facies is very common in the Middle and Upper Woodford. This rock

resists weathering and produces low relief outcrops littered with platy debris (Figure 1.3.8c).

Siliceous Ooze/Chert: The most distal facies, siliceous ooze/ chert is usually interbedded with the
siliceous mudstone but it can form much thicker beds more distally. The facies is typically close
to 90% tectosilicates (with little to no feldspar) and less than 10% clay. Within the petroleum
system it is typically 2-4% TOC but it can be less distally. Due to the high quartz cement content,
mostly from radiolarians, this facies strongly resists compaction, but porosity is commonly
occluded by cement. This also can prevent it from acquiring a laminated appearance. This facies
resists weathering and is always the brittle component of brittle-ductile couplets common in the
Woodford.

Dolomitic Mudrocks: Dolomitic mudrocks are also present in the Woodford as very hard beds.
They are relatively rare or under recognized due to confusion with chert beds. These are the only
significant carbonate beds observed in the Woodford. Brito (2019) reports these to be 50%
dolomite, 35% quartz and 10% clay and have 2-4% TOC (Ekuwenfie, 2017). These rocks are
usually highly uncompacted and very well cemented. Some workers have suggested the more
massive dolomite beds at the Hunton Quarry Anticline (Section 3.1) are recrystallized
calciturbidites. An alternative interpretation, which we favor, is that the massive ferroan dolomite
beds are organogenic dolomites formed by sulfate reduction and methanogenesis as has been
interpreted for similar beds elsewhere (Mazzulo, 2020). Both geochemical processes are known to
occur or likely to occur in the Woodford.
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Figure 1.3.9 Environmentally and bathymetric driven facies controls a) Simplification of an

upwelling zone showing areas of phosphate deposition, turbidite input, and deep oxygen-rich water

(Wignall 1994). b) Local restriction/ paleotopography which may be more significant (Cardott and

Comer 2021). c) Strike section showing that lower and middle units onlap and cover bathymetric

highs features (Kvale and Bynum, 2014).
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1.3.4 Woodford Sequence Stratigraphy:

The Lower and Upper Woodford were
deposited during a major rise & fall in long-
term eustatic sea level, respectively, and
correspond to transgressive (TST) and high
stand (HST) systems tracts (Figure 1.3.10).
The maximum flooding surface (mfs)
occurs in the Middle Woodford which has
relatively higher clay and organic carbon
percentages. Shorter term sea level
fluctuations superimposed on the long-term
trends produce a subset of up to 7
transgressive and regressive parasequences
(Slatt et al., 2018). The turn-around in sea
level from highstand to falling stage likely

occurred within the upper Woodford.

Adapted from Slatt and Rodriguez (2012)

U-WDFD
Hs %
MFS %S /&
<>
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S ®
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LIS/ 3 e
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Relative Sea Level

Figure 1.3.10 ldealized Woodford sequence stratigraphic framework in relation to 5!3C organic,
sea level fluctuations, and glacial episodes. Inset shows systems tracts in relation to Devono-
Mississippian first order cycle.

26



1.3.5 Woodford Petroleum Geology: From a petroleum systems perspective the Woodford Shale
is unarguably the most important stratigraphic unit in the Midcontinent. As a source rock it has
generated and expelled the majority of oil and gas produced in Oklahoma and Kansas and is the
dominant critical factor that makes the Anadarko basin a “Super Basin” (Fritz and Mitchell, 2021).
Woodford mudrocks and shales also serve as the top and lateral seal for structural and stratigraphic
traps in the underlying Hunton Group carbonates. Additionally, naturally fractured Woodford is
known to produce from several anticlinal traps in the Ardmore and Marietta basins, e.g., the Caddo
field about 6mi south of the 135-S outcrops (Section 3.5).

Over the last twenty years hydraulic fracture stimulation of horizontal wells in the Woodford Shale
has exponentially increased its importance as a self-sourced reservoir. Since 2010 more than 6,000
horizontal Woodford wells have been completed in Oklahoma (Figure 1.3.12b). Critical
subsurface success factors underpinning the Woodford horizontal play are its widespread
distribution of more than 150ft of thickness, high original organic content, a broad range of thermal

maturity, and a high percentage of brittle siliceous-brittle beds, and (Figure 1.3.11a).

The ratio of siliceous-brittle

1. Fractures easily, but has low HCIP and drills slowly
Brittle, low TOC & HCIP*

beds to argillaceous-ductile | .
) ) L J 3 ) ) 7V Y N Y ) ]
beds (brittle-ductile couplets) is D”“&{"ghmcg‘”c”’ emmaas
} . . __J 7 2 J /> > J / ) [ |
an important success factor; | Horizontal well bore

siliceous beds are more easily  [*Hcip- hydrocarbons in place

2. High HCIP, drills quickly, but low stimulated rock volume

fractured but have lower TOC,

hydrocarbons-in-place, and

slower penetration rates (Slatt

et al., 2018). Most operators . .
. ] ] Goldilocks LandingZone 3. Good HCIP, stimulated rock volume, drills well
strive to land their laterals in

target zones that optimize both

geomechanical properties and

hydrocarbon storage.

Figure 1.3.11 Idealized Woodford geomechanical end members.
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Initially operators targeted the gas window of the Woodford horizontal play. As the intensity of
the fracture stimulations increased the play was successfully extended into the oil window.
Maturity data such as vitrinite reflectance, Gas-Oil Ratio, and API oil gravity were used to refine
leasing and appraisal strategies. These variables generally have positive correlations with each
other. However, in places gas migration along regional fault-fracture systems gives a false
impression of higher maturity than other indicators (Figure 1.3.11c). In addition to geomechanical
information, the geometry and intensity of natural fracture systems in the Woodford are important
component of outcrop observations (Figure 1.3.12), particularly in light of the notable concomitant
increase in the magnitude of completions-induced seismicity as the intensity of Woodford

completions, fracture stimulation in pounds per foot, nearly doubled (Cullen, 2020).
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Figure 1.3.13 Photographs of outcrop fracture sets in the Woodford, a) Wyche Quarry (2.1) b) S.
Jack Fork Creek (2.3) c) Hunton Quarry Anticline (3.1), d) 177-D Heart of the Arbuckles (3.2).
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2.1 Wyche Quarry Area 2N-6E SW/NE Sec 2: The Wyche Quarry is an active shale pit about
0.5mi south of the Hass G section and about 1mi to 0.5mi east of the composite sections of DDRSP,

Dump Draw Ryan Shale Pit, site of Over (1992; Figure 2.1.1). This is a currently active quarry

that can only be visited on weekends, with permission of the operator. Smaller groups in SUVs
can descend to the quarry floor. Larger tour bus groups can park at the top and walk down to east

side of the quarry where key features can be seen on the quarry floor and wall.

The vertical walls of the Wyche quarry expose about 70ft of upper Woodford and the quarry floor
covers approximately 12 acres (Figure 2.1.2). These fresh exposes offer an excellent 3D view of
the Woodford. About 600ft east of the quarry the Wyche-1 is a research well that cored and logged
the entire 270ft Woodford section. The core from this well was studied for lithostratigraphy,
chemostratigraphy, organic geochemistry, and palynology. When combined with the wireline log
data and integrated with observations in the quarry, this represents one of most complete analytical
data sets that can be used to calibrate subsurface studies (Buckner et al., 2009; Turner et al., 2015;
Connock et al., 2018). Because of the relatively simple flat-lying structure of the Lawrence, the
Wyche-1 can be confidently projected 600ft into the eastern wall of the Wyche quarry (Figure
2.1.3).

As discussed below, however, there is uncertainty whether the uppermost section should be
considered as Woodford (Buckner, 2009) or pre-Welden shale (Molinares, 2013; Turner et al.,
2015; Slatt et al., 2018). Nearby outcrops along south Jack Fork Creek provided a critical dataset
for our understanding of the Devono-Mississippian section of the Lawrence uplift Woodford
(Over, 1990, 1992; Boardman and Puckette, 2006). There are 7 features of the Wyche area that

deserve specific attention:

1: Only siliceous and argillaceous shales in the Upper Woodford are exposed. The Middle and
Lower Woodford lie below the present quarry floor. The absence of chert is consistent with spatial
arrangement of lithofacies (see Section 1.3; figure 1.3.7). As discussed further below there is
significant disagreement as to whether the upper 60-70ft of core should be treated as pre-Weldon
Shale (Turner et al., 2015). This is doubtful. Consider the simple structure of the Lawrence uplift,
the Wyche-1 can confidently be projected into the quarry wall (Figure 2.1.3) which imply the
entire 70ft wall is pre-Welden shale when the pre-Welden shale never exceeds 1ft in thickness at

nearby outcrops (Figure 2.1.4d).
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Figure 2.1.1 Location map of Lawrence uplift Woodford outcrops; Google Earth image and

regional geological map. Locations DDRSP sections courtesy of Over

personal communication.
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Figure 2.1.2 Arial view of Wyche quarry and Wyche-1 about 600ft east of quarry floor. Key
features shown are: orange filled circles- large pyrite saucers, white triangles- petrified logs. The
inset photo is the recently excavated Woodford-pre-Welden ash contact.
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Figure 2.1.3 Wireline logs from Wyche-1 projected 600ft into the eastern quarry wall. Phosphate
nodules- blue circles. Top Middle Woodford pick from Turner et al., 2015. “Extra” upper
Woodford section on log is the same as the pre-Welden shale section of Turner et al., 2015.
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38



2. The Upper Woodford has a 30ft /10m interval with abundant phosphate that persists along the
entire quarry walls. The phosphates nodules exhibit a vertical change in morphology from
spherical to elliptical nodules to lenticular thin beds (Figures 2.1.5 and 2.1.6). On the western
quarry floor loose, spherical nodules are abundant than elliptical nodules (Figure 2.1.7a and b). As
observed at other Woodford outcrops, the phosphate nodules typically have well developed
compactional drape (2.1.7c) indicating they precipitated at or very near the sea floor - predating

deposition of the overlying mudrocks.

Overlying this phosphatic interval, the uppermost Woodford is very lean in phosphate nodules,
has thin, lenticular phosphorite beds that are expressed as spikes in P on the XRF
chemostratigraphic log (Figure 2.1.9). The XRF data indicates that the nodule-rich interval
continues about 50ft below the present floor of the quarry, which makes for a relatively thick
interval (80ft/25m) of phosphate enrichment. A relatively thick interval of Upper Woodford
phosphate nodules is present in the Current-1 core about 2.5mi due north of the Wyche quarry
(Figure 2.1.4c, d).

3: On the current quarry floor there are widespread, large pyrite concretions. These are particularly
well exposed on the southeastern side where more than a dozen pyrite concretions up to 3ft/Im in
diameter are confined to a single bed (Figure 2.1.9). We were unable to determine their full
thickness, but these “saucers” of pyrite can be up to 2ft thick according to the quarry operator.
Such massive nodules represent a significant horizontal drilling hazard. Such pyritic beds appear

to be rare as we have not seen nor read about such extensive pyritic beds elsewhere.

The paragenesis and timing of pyrite crystallization is not fully determined. Like the phosphate
nodules they appear to be relatively early in the diagenetic history as inferred by divots of pyrite
nodules that make an undulous top reflecting soft sediment deformation below and differential
compaction above (Figure 2.1.9). Such massive amounts of pyrite is consistent with biomarker
data (Figure 2.1.10) and chemostratigraphy that indicate episodes of anoxic (no oxygen) and
euxenic (sulfidic) conditions, particularly in the Middle Woodford (Connock et al., 2018; Turner
et al., 2015). Of particular significance, in the Middle Woodford, is the presence of biomarkers
related to anoxygenic phototrophic green sulfur bacteria (family Chlorobiaceae) that indicate the
development of photic zone euxenia. This family of bacteria grows only under strictly anoxic and
sulfidic conditions using HS rather than H2O as the electron donor for photosynthesis.
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Figure 2.1.7 a) Southwest quarry floor, spherical phosphate nodules and pyrite concretion (yellow
dashed line). b) South quarry floor, spherical phosphate nodules. ¢) Pyrite compacting around
spherical nodule with dark core.
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Figure 2.1.8 Wyche core lithofacies & chemostratigraphy. Middle Woodford shows evidence for
water column stratification and photic zone euxinia (Connock et al., 2018). P-spikes indicate
vertical extent of phosphate nodule and beds. Redox sensitive elements Mo and V are highlighted.
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4. One of the most intriguing features at the Wyche quarry is the presence of 3 petrified logs above
the upper east rim (Figure 2.1.2.). The full length of each log is not exposed, but each is at least
10ft long. All 3 logs have similar diameters greater than 2ft. Preservation of internal features of
these logs is not of the same quality as the extremely large, charred log at Site CR 1610 (see Section
2.3). Although fragments of petrified tree trunks (Callixylon; Archeopteris tree) in the Woodford
are not uncommon most specimens are single, isolated, modest-sized (2-3ft) specimens (Suneson,
2010). To find three relatively large logs together is previously unknown, at least in Oklahoma.
What is particularly intriguing is the that fact all 3 logs lie with a similar E-W lineation. According
to the quarry operator, the logs have not been dug up and moved; they are in place. The distance
to the shoreline and Devonian forests is not known, but a reasonable estimate from regional
paleogeography is at least 100mi (Figure 1.3.2). Given that distance, and the lack of any evidence
of subaerial exposure, it is difficult to believe these logs simply fell in place. However improbable,
the most logical remaining explanation for the Wyche quarry logs is that they were washed out to
sea, perhaps in a major flooding event, and then go caught in the same ocean currents & processes
before they became waterlogged and sank together to be preserved in the dysoxic muddy water
bottom.

5: There are 2 dominant fracture sets that can be seen on the quarry walls and a third set observed
on floor of the quarry. Both sets are nearly vertical. From the work of Ataman (2008) and Ghosh
and Slatt (2019) the main fracture sets have the following characteristics (Figure S1-14): Group 1
fractures (N85E average strike) are regular, have a systematic spacing (4ft), and tend to be mineral
filled; Group 2 fractures have aspects of being a conjugate system (NE-SW and NW-SE average
strike) are less systematic, tend to be open, and terminate against (post-date) Group 1. Borehole
imaging in the Wyche borehole shows the Upper Woodford is more highly fractured than the
Middle or Lower Woodford. The Upper Woodford typically has greater silica cement than the
underlying Woodford (Slatt et al 2017) and therefore a greater propensity to fracture.

6: Another interesting feature of the Wyche quarry is a tannish white unit recently uncovered
during operations at the top of the quarry (Figure 2.1.13). The unit is about 10ft thick and has very
limited extent. It is extremely siliceous, yet relatively porous. It adheres to the tongue and has a
low density. At the base there are beds with molds of phosphate nodule molds as well as a few

loose reworked? phosphate nodules. Some beds have subtle current ripples and a few fragments
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of petrified wood have been found. Almost out of a process of elimination, we interpret this bed
as recrystallized water laid ash. An attempt to age date this unit failed owing to insufficient

recovery of zircons.
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Figure 2.1.12 Fracture analysis from Ghosh (2017) and Ataman (2008)
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Figure 2.1.13 a) Ash bed on Woodford N. Quarry wall b) 2 photomicrographs; upper right w/
phosphate nodules and 135-N nodule conglomerate f) Bench top XRF data.



7: If time permits a visit to the Ryan shale pit ~0.3mi west of the Wyche quarry is recommended
(Figure 1.2.14). One can drive across an open field most of the way. The upper 30ft of Woodford
is gray fissile mudrock, barren of phosphate. Irregular and ovoid phosphate nodules occur lower
in the pit. The pre-Welden shale, if present, is covered. In the float on the hill above the pit there
are pieces of Weldon Limestone including silicified oolitic cross bedded grainstones and Favosites
corals. These shallow marine, high energy carbonates suggest a short-lived drop in sea level

associated with top Woodford disconformity prior to deposition of the Caney Shale.
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Despite numerous studies of the Wyche

. Over, 1992
area there are several unresolved issues.
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Caney is present in the Wyche area. Figure 2.1.15 Stratigraphic column from Over, 1992
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The second problem is disagreement in position of the top of the Woodford in the Wyche-1 and
Wyche quarry (Figures 2.1.3; 2.14a). Molinares (2013), Turner et al., (2015) and Slatt (2018)
interpret the upper 80ft in the Wyche core as pre-Welden shale, which correlates to the entire
quarry wall. Over (1990) and Buckner et al., (2009) assigned this 80ft section to the Upper
Woodford. The section in question is clearly Devonian not Mississippian (Over 1990). We note
that at multiple locations on the Lawrence uplift the pre-Welden shale never exceeds 1ft in
thickness (Figure 2.1.4d). Outcrops of the pre-Welden shale are light greenish mudrock- bear little
resemblance to the grey to black Woodford mudrocks (Figure 2.1.16). Thus, the biostratigraphy,
isopach, and lithology data support treating the entire Wyche-1 core and quarry wall as Upper
Woodford. Compared to Upper Woodford in the Arbuckle Mountains and Ardmore basin the
Wyche-1 wireline logs have some interesting features that likely underpinned the interpretation of
thick pre-Welden shale (2.1.3d): 1) The extra section has a lower gamma ray (<200) than the rest
of the Woodford). 2) There is a distinct separation on the neutron-density logs, indicative of being
shalier than the interval below, however, the gamma ray reads low. 3) The resistivity is slightly
elevated, nearly constant. We interpret features 2, and 3 to reflect the presence of bound fresh
water above the water table.

Lastly, as discussed in Section 1.3.2 there are significant differences in the position of the Frasnian-

Famennian boundary between conodont biostratigraphic and chemostratigraphic methods.

Section F/F boundary m. DC Boundary m.
) . References

(Lawrence uplift locations) above HUNTON below top WDFD
Hass-G covered 0.6 Hass and Huddle, 1965; Over, 1990
Weldon Type covered 0.6 Over 1990, 1992
Hass En 0.21 covered Hass and Huddle, 1965; Over, 1990
Wyche / Ryan 26 truncated (Over) |Turner etal., 2016
Goose Creek covered 0.8 Over 1990, 1992
Ebby Dam covered 0.5 Over 1990, 1992
Guest Ranch covered 0.6 Over 1990, 1992
Burning Mtn 0.2 covered Over 1990
Hunton Quarry Anticline 50 covered Turner et al., 2016
Hass-B YMCA 15.7 covered Over, 1990; Crick,et al., 2002
Hass-A Henry House Creek 3.3 covered Hass and Huddle, 1965; Over, 1990
I-35 South covered 4.5 Over 1990, 1992; Kondas 2018
McAlister Cemetery Quarry 12-15 27 Over, 1990, 2002; , Cullen Hg spike
McAlister Cemetery Quarry 69 no data Molinares et al., 2019
Wapanucka Shale Pit covered 81 Over 1990, 1992

Table 1.3.2 Key sections where F/F and D/C boundaries have been established with comparison
to chemostratigraphic F/F boundary of Turner et al., 2016.
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lithology, and the continuation of phosphate nodules (blue P’s) b) Photo of Hass-G outcrop: WLS-
Welden Limestone, P-WSh- pre-Welden Shale, WDFD- Woodford Shale. ¢) Photo of greesnish
pre-Welden Shale.
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Molinares (2013) placed the F/F relatively high in the Wyche core attempting to match the global
Devonian T-R (Transgressive-Regressive) cycles of Johnson al., (2008). Molinares et al., (2019)
compared §3Corganic isotope trends to the global secular §C curve to place the F/F high in the
section. To confidently use stable carbon isotope data requires biostratigraphic constraints;
numerous additional T-R cycles can be defined by consistently in honoring small GR deflections
(figure 2.1.17a) and accommaodating periods of slow and fast sedimentation at different localities
requires stretching and shrinking the global secular 8*3C to match local observations. Organic-rich
shales of the middle Famennian Dasberg Event also have a slight positive deflection in 8**Corganic
(Stock and Sandberg, 2019) in the Wyche core.

For the Wyche data set Molinares (2013) put the top of the Devonian below a thick section of pre-
Welden Shale, which we interpret as upper Woodford (see discussion regarding Figure 2.1.3).
Therefore, the global curve needs to be stretched to the top of the core (Figure 2.1.17b). Atthe En
site, 2mi west of the Wyche-1 high quality conodont at places the F/F just 0.77ft above the Hunton
(Over; 1990) which strongly suggests that most of the Frasnian section is missing, not deposited(?).
Thus, these data can equally suggest that the entire section in in the Wyche-1 core and the Wyche

quarry is Famennian in age (Figure 2.1.7c).
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2.2 Hass G: The Hass-G outcrop (SE/SE Sec. 35 T3N R6E) is on a cut bank on the south side of
South Jack Fork Creek 100ft north of CR1610 about 3/4mi west of US 377 (Figure 2.2.1). When
water levels are very low one can simply walk down the creek bed; otherwise, one must make their
way through patches of thorny brush and down an embankment to the base of the outcrop (Figure

2.2.2). CR1610 is a narrow unpaved road. This location is not suitable for tour buses.
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Figure 2.2.1 Location map for Hass-G with Google Earth image. A, B, C refer to locations of the
composite stratigraphic section of Puckette and Boardman (2016).

Hass G is an import, albeit compact, outcrop on the Lawrence uplift. Several key features should

be noted.

1. It is the best exposed and easily accessible outcrop where the Devonian-Carboniferous
(Kinderhookian) boundary (DCB) has been determined by conodont biostratigraphic studies;
Hass and Huddle (1965) and Over (1992) place the DCB about 2ft/60cm below a sharp contact
with the distinctive greenish pre-Welden shale which is in turn overlain by the argillaceous
ostracod/trilobite wackestones of the Welden Limestone Figure 2.2.2). In the context of
interpreting the Wyche-1 core (Section 2.1), it should be noted that similar to other outcrops
on the Lawrence uplift the pre-Welden shale at Hass-G is very thin (~1ft).
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section (SE1/4, SW1/4, Sec. 35, T3N, R6E, Ahloso Quadrangle). The upper

™ four meters of the Woodford Shale are exposed, overlain by 30 cm of “pre
Welden Shale” and the Welden Limestone. The Woodford consists of hard, black
dark brown thinly laminated shale that weathers into platy fragments. Thin,
light-colored, discontinuous phosphatic lamina, consisting of pelloidal
phosphate with a grapestone texture, occur in the upper 1.5 m of the Woodford
exposure. These laminae are more common in the upper meter where a

' prominent phosphatic bed occurs 60 cm below the top of the Woodford. Soft
ws,  green-brown shales of the “pre-Welden Shale" lie with a sharp contact on blac

' shales of the Woodford.

Figure 2.2.3 Hass-G stratigraphic sections of Hass and Huddle (1965) and Over (1990, 1992) with
conodont zones.

2. At Hass-G the Woodford is predominately a thin-bedded, platy, dark gray siliceous mudrock.
A limited amount of source rock characterization (Table 2.2.1) shows the Woodford to be an
immature, organic-rich, marine source rock (Vro ~0.33%, TOC ~6.6-12.9%, HI ~603). These

data are consistent with the viewpoint that the Lawrence uplift was never deeply buried.

S1 S2 S3 Tmax Calc. | TOC
(mg/g) | (mg/g) | (mg/g) | (°C) | S1+S2 | Vro% |[(%wt)| HI
HG-0 12.7
HG-60 6.6
HG-100 1.16 | 77.73 1.16 416.0 | 78.89 0.33 12.9 603

SAMPLE

cm below
pre-Welden Calculated%VRo = 0.0180 x Tmax - 7.16 (Jarvie et al., 2001)

Table. 2.2.1 Woodford % TOC and Rock-Eval data at Hass-G.
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3. Thin lenticular beds and nodules of phosphate nodules occur in the uppermost part of the
Woodford (Figures 2.2.4a and 2.2.4b). The upper part of this section also has several pieces
of petrified wood (Figures 2.2.5a and 5b) which have the appearance of small branches
measuring several inches wide and lacking bark, unlike the large logs describe at other

Iocatlons |nclud|ng the Woodford Log Iocatlon (Sectlon 2 3).

Figure 2.2.5b

Figure 2.2.5 a) and b) Photographs of silicified branches (W).

When Jack Fork Creek is low one can see two well-developed nearly vertical fracture sets (NNE
and EW) in the top of a more massive Woodford bed (Figure 2.2.6a). These fractures do not extend
up into and through the overlying thinly bedded clay-rich Woodford exposed in the wall of the cut
bank (Figure 2.2.6b), nicely illustrating the concept of brittle-ductile mechanical stratigraphy.
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Figure 2.2.6 a) Fracture sets bed top b) CIiff face fractures that die out in shaly unit above.

The inorganic geochemistry of the Hass-G location is as interesting as it is perplexing. Three
samples were analyzed by ICP-MS. The numbering on HG-0, 60, and 100 refers to the distance
in centimeters below the Pre-Welden shale; HG-60 is near the DCB. Relative to the other samples
HG-0 is strongly enriched in numerous elements such as Ag, As, Cu, Hg, Mo, Ni, Se, and V (Figure
2.2.7a). Orth et al., (1988) also noted anomalous metal concentrations at Hass-G in the Woodford,
Pre-Welden shale, and Welden Limestone including Pt and Ir anomalies. The lack of
microspherules and Pt:Ir ratios led those workers to suggest the anomalous geochemistry reflect
poorly understood bacterial activity. Alternatively, the elevated Hg and Hg/TOC values in HD-0
(Table 2.2.2) could reflect volcanic input as documented elsewhere globally at the DCB
(Rakocinski et al, 2020). The behavior of the REE’s is quite interesting. HG-0 is notably depleted
in REEs relative to HG-60 and HG-100 Figure 2.2.7b). HG-0 is from an interval that has phosphate
lenses and nodules. Pending further analytical work we suspect that the lenses and nodules are
preferentially concentrating the REESs in the phosphate-apatite crystal structure’s trivalent cation
sites.
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a)

SAMPLE | Ag Al As Ba Be Bi Ca Cd Co Cr Cs Cu Fe Ga Ge
ppm % ppm | ppm | ppm | ppm % ppm | ppm | ppm | ppm | ppm % ppm | ppm
HG-0 10.45| 411 85 640/ 2.11| 1.00 33 9.03| 153 135 59 424 4.26] 19.8) 0.28
HG-60 0.89] 549 276 330, 232 0.24 59| 2.89 5.7 132 73| 1355 1.82| 133 0.24
HG-100 1.32 5.31 21.6 300 2.4 0.4 4.8 3.81 9 182 6.4 94.1 2.04 12.8 0.27
Hf Hg In K Li Mg Mn Mo Na Nb Ni Pb Rb Re S
ppm | ppm | ppm % ppm % ppm | ppm % ppm | ppm | ppm | ppm | ppm %
HG-0 19 1.85 0.07 1.89 22.1 0.61 62| 285 0.24 7.3 1050 149.5 95.2| 0.631 1.37
HG-60 2.5 0.183] 005 241 279/ 0.70 82 27| 033 9.2 143| 20.9| 122.5| 0.066] 0.31
HG-100 2.2| 0.255 0.05 2.26 27.2 0.69 80| 58 0.30 8.0 377 26.5| 108.5| 0.336 0.57
Sh Sc Se Sn Sr Ta Te Th Ti Tl U vV w Zn Zr
PPM Ppm Ppm ppm ppm Ppm Ppm ppm % PpPm ppm Ppm ppm PpmM PPmM
HG-0 56.6 10.1 82 2.2 370 0.48 2.95 6.69| 0.223 39.1 27.7) 1735 1.7 790 80.1
HG-60 5.3 11.6 7 2.2 158 0.64 0.8 9.55| 0.274 5.42 37.3 387 2.2 272 88.6
HG-100 6.01| 103 19 2.1f 127.5| 0.57 0.29] 7.71| 0.264| 5.25| 59.4 590 1.8 500 78.6
La Ce Dy Er Eu Gd Ho Lu Nd Pr Sm Tb Tm Yb Y
PPM | PPM | PPM | PpM | ppm | ppm | ppm [ ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm
HG-0 30.4 36.1 3.49 1.96 0.87 4.09 0.65 0.29 27.2 6.66 5.04 0.56 0.27 1.9 24.1
HG-60 87.1] 828 1235 6.33 2.72] 13.85 2.3 07| 805 201 1505 192 0.8 4.8 89.5
HG-100 76.8| 829 11.3] 6.03 23| 122 216/ 0.64] 687 163 1305 173 076/ 4.54 81.2
RED Bold = Highly enriched 10.00 ‘ -
Yellow = depleted c) Normalized to PAAS| —%—HG Osh
All samples are organic-rich mudrocks —o—Hg60sh
All samples have >10,000ppm P —%— Hg100sh
b) —
P~
sample Fm. | Hgppm |Hgppb | o | Heeeb/ S == = S
p . g pp g PP Wt% ToC N:_&—\_(
k—“_\:
HG-0-Hg |WDFD Shale| 1.85 1850 | 12.70 146 1.00
HG-60-Hg |WDFD Shale | 0.183 | 183 | 6.57 28 _"-\-/I\L
—— I
HG-100-Hg | WDFD Shale | 0.255 255 12.90 20

0.10

La

Ce Pr

Nd

Sm Eu

Gd

Th

Dy

Ho Er Tm Yb Lu

Figure 2.2.7 a) ICP-MS data for 3 shale samples collected at 0, 60, and 100cm from top WDFD.
Bold red numbers highlight anonymously high metal concentrations at D/C boundary. b) Mercury
data normalized to %TOC. HG-0-Hg is anomalously enriched. c) Rare Earth Element
concentrations in 3 shales normalized the Post Archean Average Shale (McClennan, 1989).

6. In addition to a well-defined Devonian-Carboniferous boundary at Hass-G, there additional

outcrops downstream along South Jack Creek that expose the pre-Welden shale, Welden

Limestone, and basal Caney Shale. crop out (A, B, C on Figure 2.2.1). Studies of these outcrops
(Haywa-Branch and Barrick, 1990; Over and Barrick, 1990; Boardman and Puckette, 2006)
integrated with Hass-G enable the construction composite stratigraphic column that encompasses

the entire Late Devonian to Early Mississippian section on the Lawrence uplift (Figure 2.2.8).
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2.3 Woodford Log: North Jack Fork Creek T3N R6E C Sec 34: This stop is an expansive
inactive shallow shale pit on the south side of North Jack Fork Creek about ¥ mile County Road
1600 (Figure 2.3.1). The original culvert over the creek has washed out and access is by a small
track through the woods. The location is not accessible by tour bus. Permission from the quarry

owner is recommended.

The stellar feature of this location is a giant (34ft long) silicified tree trunk (Figure 2.3.2 a, b). Here
the Woodford is almost exclusively a light to dark gray, fissile siliceous mudrock (Figure 2.3.2a
and c) that makes a characteristic crunching sound when walked upon. The vertical extent of
section exposed is limited. From local stratigraphic considerations (Hass-G, Section 2.2), its lighter
color, and lack of phosphate nodules, we place this section in the Upper Woodford. In a small
excavation on the west side of entrance to the quarry thin layers of current laminated argillaceous

siltstone are present (Figure 2.3.2d).
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Flgure 2.3.1 Location map and Google Earth |mage of Woodford Log (WL) location of CR 1600.
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Figure 2.3.2 a) Photo of giant silicified tree trunk b) Aerial view of Woodford tree trunk with 2
geologists for scale. ¢) Platy brittle Woodford shale with small crenulation, yellow arrow. d) Thin
siltstone beds in quarry pit wall.

In addition to the Woodford log this location several interesting structural features. Two prominent
fracture sets can be seen on the bed tops (Figure 2.3.3). The E-W striking fractures (also prominent
at the Wyche quarry) are more widely spaced but have a much greater length than a NW-striking
set of fractures. On the small west wall of the quarry one can see some vertical fracturing are
preferentially confined to the more siliceous unit, nicely illustrating the concept of brittle
(siliceous) / ductile (shaley) mechanical stratigraphy (Figure 2.3.4). These features are a good
stimulus for a discussion of a preferred direction of a horizonal well to optimize stimulated rock

volume upon hydraulic fracture stimulation.
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Figure 2.3.3 Well developed fracture set of bed tops.

The giant Woodford tree trunk (34ft x 3.5ft) is a silicified Callixylon log and is likely the largest
specimen recorded in the Woodford (Cullen et al., 2021). Petrified wood is widespread but not
abundant in the Woodford (Suneson, 2010). The Lower Woodford has a meter-sized block of
petrified wood along Henry House Creek, Hass-A (Aufill, 2007). Smaller branches of petrified
wood is relatively abundant in the Upper Woodford at Hass-G (Section 2.2). In addition to its
remarkable length, the petrified log at this site exquisitely preserves bark that appears to be burned
(Figure 2.3.5a, b) and details of vascular tissue (Figure 2.3.6¢c). Compactional drape around the
log is very well expressed (Figure 2.3.6d). How such a large log came to be deposited in the
Woodford is a matter of conjecture. We propose that the original tree was burned in a massive
forest fire, floated out to sea, eventually became water saturated, sank into the dysoxic muddy

ocean floor below storm weather wave base, and was subsequently buried.
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Figure 2.3.4 Quarry wall with minor discontinuous fractures (yellow arrows) in more brittle B-2
unit that do not cut through the more argillaceous bounding beds, B1 and B3.

The term Callixylon was originally reserved for the trunks and limbs of a species of tree,
Archeopteris. Its leaves and branches are rarely found together. It wasn’t until 1960 that they were
assigned to a single biological taxon by Beck (1960) who established that Archeopteris is a
progymnosperms that resembles a large top heavy Christmas tree with relatively small leaves
(Figure 2.3.7a,b). Archeopteris had a short evolutionary run from the middle Frasnian to extinction
at the end of the Devonian. It is curious that despite large fragments of wood, virtually no smaller
leafy, humic organic matter occurs in the Woodford, a world class marine algal source rock. We
hypothesize that the Famennian Wildfire Explosion in Euramerica (Lu et al., 2022; Figure 2.3.7.c,

d) preferentially burned leaves and small branches leaving behind mostly larger tree trunks.
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Figure 2.3.5 A) Photo showing length and girth of silicified log B) Close up photo of the base of
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the log.
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Figure 2.3.6 Detailed preservation of bark, vascular tissue, compactional drape associated with

Woodford log.
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Figure 2.3.7 a) Idealized representation of the full Archeopteris tree, b) Photo of fossilized
leaves, c) Plot of combustion proxy biomarker vs. stratigraphic position at McAlister Cemetery
Quarry (DeGarmo, 2015), d) Global and regional Euramerican Devonian wildfire occurrences
(Luetal., 2022)
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2.4 Additional Lawrence Uplift Locations:

We have included two exposures
Woodford on the Lawrence uplift
not been previously described. The
exposures are shallow shale pits
are directly adjacent to county
roads between outcrops previously
discussed. Although easily
accessible, both locations are small
with limited vertical exposure.
Consider these as short optional
than  must-see

stops  rather

localities.

Figure 2.4.1 Location map for Pyrite Balls and County Pit sites
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Pyrite Balls: About 30ft of Woodford is exposed on the east side of CR3560, which becomes Kerr

Lab Road heading north to Ada. The outcrop is dominated by thin-bedded to papery dark gray

mudstone which transitions to flaggy/ slatey mudstone at the top of the outcrop. Phosphate nodules

appear to be absent and there is minor chert in the float towards the top of the hill. Of interest at

this location is a 2-3ft pyrite bearing bed. The pyrite occurs as small lenses and as spectacular balls

up to 2in/6¢cm in diameter that are encrusted with aggregates of euhedral pyrite crystals 3-4mm

across (Figure 2.4.2).

There are only a few of these large pyrite balls at this outcrop and we have not seen such well-

developed aggregates of this morphology elsewhere in the Woodford. Therefore, unless you are

specifically studying pyrite geochemistry in the Woodford before collecting one, please ask yourself

if a photo would suffice.
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Figure 2.4.2 Arial and road view of Pyrite Palls location off CR3560. Photo of ball composed of
massive pyrite coated with aggregated euhedral pyrite crystals.

County Pit 3510: This location is 5001t south of CR1610 about 1mi from Hass-G and 0.8mi from

the Pyrite Ball locations (Figure 2.4.1). About 1.4 acres has been stripped away by the county to
expose the tops of several beds of Woodford. Vertical exposure is minimal. The CP location has
two noteworthy features The first is a very well exposed fractures in the bed tops. These can be
grouped into 3 sets: NW-SE, E-W and NE-SW. The NE-SW fractures are more closely spaced and
abundant. This location is suitable for a more rigorous statistical fracture study. Second, the
exposed beds have abundant rounded phosphate nodules, with REE enrichment similar to those at

the Wyche Quarry (Figure 2.4.3c).
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Figure 2.4.3 a) Fracture sets at CP b) Concentrically banded spherical phosphate nodules c) REE
plot normalized to North American Composite Shale showing up to 10X enrichment.
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3.1: Hunton Quarry Anticline 1S-3E C-31: Stop 3.1 is on the nose of a NW plunging anticline
that is related to the Tishomingo-Belton anticline along the Reagan Fault (Figures 3.0). If coming
from Ada & Sulphur one travels west of the Goddard Youth Camp Road (Figure 3.1.1). There is
sufficient room to park a motor on the north side of the road. At this location there is a quarry in
the Hunton Group and several Woodford shale pit. This location is a frequently visited stop owing
to the textbook example of a gently folded anticline with a small thrust fault in the Cravett Member
of the Bois d’Arc Formation, Hunton Group (Stanley, 2013; Figure 3.1.3). Given the excellent
Hunton exposure we recommend visiting the quarry and then walking east to the base of the
Woodford in shale pit B (Figure 3.1.2).
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Figure 3.1.1 Location and road map for Hunton Quarry Anticline

77



S9)INQgJy Y3 Jo e

M5~

~ —-L‘J‘ A —— N

‘

Figure 3.1.2 Arial view of Hunton quarry (Q), Woodford shale pits (A,B, C,D) and a sketch of
geological contacts on NW-plunging anticline along the Reagan Fault.
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Small Thrust

Upper Bench

Figure 3.1.3 Hunton quarry anticline with small thrust fault. Note the double fold in the thinner
bedded lower bench.

The quarrymen exploited two nearly orthogonal vertical fracture sets (N20°E and N70°W; Figures
3.1.2, 3.1.4). On the west side of the quarry, Cullen (2017) documented the WNW fractures tend
to be calcite-cemented and closed; whereas the NNE be open with minor calcite fill and have
occasional horizontal slickenlines with down-stepping asperities that suggest right lateral
movement (Figure 3.1.5). These two vertical orthogonal fracture sets do not fit Mohr-Coulombic
shear fracture relationships suggesting two episodes of fracturing. The slicklines suggest the
N20°E may record an additional phase of deformation. Regardless of the interpretation of these
observations, interesting questions are posed regarding preferred azimuth of horizontal wells

and/or placement of injector-producer pairs in a secondary recovery project.
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Birdseye view of two fracture sets 1) “N20E-open 2) “N60W-calcite filled

Cross-section photo of fracture face above marked by blue dashed line

Figure 3.1.5 Vertical fracture sets in Hunton limestones with the NNE set (1) tending to be open
with some having horizontal slickenlines with probable right-lateral motion. The NW set (2)
are cemented and closed.

81



The main purpose of this stop is to examine the Woodford Shale where a nearly complete section
has been studied by Turner et al., (2016) and Tréanton (2014). At this location the Woodford shale
is primarily composed of fissile dark gray to black siliceous shale interbedded with light gray silty
mudrock. Bedded chert is rare and there is one prominent ferroan-dolomitic bed in the Lower
Woodford (Figure 3.1.7). The lower Woodford also exhibits excellent brittle ductile couplets
(Figure 3.1.8). Also of note are several porous white beds near the top of the Middle Woodford
that are composed of recrystallized radiolarians and sponge spicules. Similar porous white
quartzose beds are present in the Upper Woodford at McAllister Cemetery Quarry, stop 4.1.

1. WDFD small faults and fractures “N20E G1 extension?
2. Shear fractures (7) N60E

Figure 3.1.6 Ferroan dolomite bed with well-developed fracture sets of similar orientation as
limestones in the Hunton quarry. Note 1) the NNE set has some minor (cm-scale) displacement-
down to the west 2) The fractures do not extend through the overlying ductile laminated beds.
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Figure 3.1.7 Excellent example of brittle-ductile couplets in the Lower Woodford.

There are only a few phosphate nodules in the Upper Woodford and these are smaller than
phosphate nodules at most other locations (Figure 3.1.8). They associated with the finely laminated
siliceous shale facies at Pit B. At Pit D only a single phosphate nodule was logged by Tréanton
(2014). Although the uppermost section of the Upper Woodford is covered on a dip slope at that

location, loose nodules in the colluvium are quite rare.

Whilst pits B and D are only separated by along strike by 1,200ft (363m) correlating these transects
is not straight forward. Three correlations considered, by Tréanton. The one preferred (red star) is
good for the Middle Woodford, but which requires (red star) is very good for the middle section
but requires adding missing (covered) section at both the base and top of Pit D (inset lower left of
Figure 3.1.9).
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Figure 3.1.7 Small, loose, phosphate nodules from Upper Woodford.

Another problematic issue highlighting short distance lateral variability can be seen in the poor
match in the XRD-based chemostratigraphic facies (Figure 3.1.10). Both profiles show the
increase in terrestrial input (Zr, Ti, Al). The strong redox facies and Mo-clay facies in the Lower
and Middle Woodford at Pit B, respectively, are substantially suppressed at Pit D. Moreover,
recall that at the Wyche location the strong redox elements were associated with the
stratigraphically shallower interval at the flooding surface at the Middle-Upper Woodford

transition.
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Figure 3.1.9 Lithofacies and chemofacies profile correlation between HAQ-B and HAQ-D (from
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3.2: SH-77-D, The Heart of the Arbuckles. This outcrop is one of several good exposures on
the north side of the Arbuckle Mountains (Figure 3.2.1. There is sufficient room off SH-77D for a
motor coach; access is excellent. This stop is primarily to look at the multiple fracture sets in the
Lower Woodford on the overturned limb of the Washita Valley syncline (Figure 3.2.2). The
Woodford-Hunton contact is exposed at the SE end of this outcrop (Figure 3.3.3), but dense

vegetation and a steep loose hillside make it difficult to visit with a large group.
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Figure 3.2.1 Location map and photo for Heart of the Arbuckles (HOA). Other Woodford outcrops
in green text in black boxes, AWA- Arbuckle Wilderness Area. AFP is Arbuckle Fried Pies, a very
convenient stop for restrooms. Location of section 3.2 is shown on the underlying cross section.

Three principal fracture sets cut through the Woodford here (Figure 3.2.2, 3.2.4, and 3.2.5). One
interesting feature of this outcrop is the distinct fractures that are confined to thin argillaceous
(ductile beds). These fractures may be related to flexural slip in the development of local structure
rather than region stresses. This outcrop offers good examples of brittle-ductile couplets controlled
by bed brittleness (Figure 3.2.5). In a detailed study of this outcrop Ghosh et al., (2017, 2018)
identified 5 fracture sets and related their development and timing to regional structural history
(Figure 3.2.8).
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d photo of Hunton-Woodford contact along SH-77D (Stanley, 2013)

3 Description an

Figure 3.2
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Figure 3.4 Photo and interpretation of 3 different fractures in the heart, in blue, red, and black
dashed lines. The heart is cut vertically by a small fault. A and B mark photos in figure 3.2.5
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Figure 3.2.5 A) Contrast in fracture geometry and density between thin of black shale and more
competent siliceous mudrock, B) Fault breccia running through the center of the heart.
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Figure 3.2.6 Photo & interpretation (below) of brittle-ductile couplets. Fractures (brown lines) do
not extend into more argillaceous beds highlighted in thin black lines. This outcrop is on the south
side of SH- 77D.
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Figure 3.2.8 Summary of work published by Ghosh et al., (2017, 2018)documenting the t

of multiple fracture set in relation of regional deformation history.
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3.3 1-35N (Phosphate nodule lag): This outcrop features Upper Woodford phosphate nodules at
the contact with the overlying Sycamore Limestone on the eastern side of the 135 roadcut (Figure
3.3.1). Although one can park off the shoulder of the highway, for safety considerations it is best
to park at the Heart of the Arbuckles (Stop 3.2), and then walk around the corner and then proceed
up section. To reach this relatively small outcrop on the hillside beware of the thick patches of

poison ivy. This outcrop is only suitable for small groups.

The highlight of this outcrop is a “bed” of phosphate nodules about 4.5ft / 1.5m thick with about
80 nodules per square meter, 2X greater than the Wyche Quarry. The nodules are loosely packed
into an argillaceous matrix (Figures 3.3.2 and 3.3.3) and highly concentrated relative to all other
outcrops we have observed. Their concentration and the thickness of the phosphate bearing zone
contrasts relative to other Upper Woodford sections (Wyche, 135-S, and MCQ) where the
Phosphate nodules are both less concentrated and found in a significantly thicker zone suggests
they may have been concentrated along a submarine(?) unconformity by marine currents and then
infiltrated by clays prior to deposition of the overlying basal Sycamore. This is important to
appreciate in understanding the complexity of the Upper Woodford contact.

Boardman (2012) compared the nodules at 135-N and the McAlister Cemetery Quarry (MCQ) and
classified then into 5 types on the basis of shape, banding, and degree of preservation of
radiolarians within each nodule (Figure 3.3.4). Boardman (2012) documented that at 1-35N the
nodules are more elongate and have less internal structure than the nodules at MCQ. Note that
many of the nodules are elongate rather that spherical, a feature noted by Boardman, who also
documented the preferential enrichment of trace metals in the darker bands of the concentric
nodules (Figure 3.3.4b and 3.3.5). The origin of this variation is not known, but a first pass

hypothesis is that these band reflect changing redox conditions.
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Figure 3.3.1 Location maps with outcrop photo. Other Woodford outcrops in green text in black
boxes, AWA- Arbuckle Wilderness Area, HOA-Heart of the Arbuckles. AFP is Arbuckle Fried
Pies. Location of section 3.3 is shown on the cross section.
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Figure 3.3.2 Photo of Woodford-Sycamore contact with interval of phosphate nodules at the top
of the Woodford.
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2.25ft / 0.75m

Figure 3.3.3 Close up of phosphate-nodule conglomerate (winnowed?)at the top of the Woodford
~ 85 nodules/m2 ~ 2X > Wyche. Note the predominance of elongate nodules over spherical
nodules, all packed in a argillaceous matrix
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y

1/3 cut of nodule- core not isible

3.3.5 Photo of a Type-A Phosphate nodule with 3 dark rings generally associated with higher U,
V, Cr, and other metals.

REFERENCES

Boardman, D.R., Il1, 2012, Preliminary analysis of phosphate nodules in the Woodford Shale, Late
Devonian-Early Mississippian, southern Oklahoma: Stillwater, Oklahoma State University,
unpublished M.S. thesis, 77 p.
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3.4: Camp Classen YMCA Spillway 2N-6E SW/NE Sec 2: This stop is to examine the excellent
exposures of vertically dipping Lower Woodford along Lick Creek starting at the barely concealed
contact with the Hunton Group below the spillway of Lake Classen about 2mi from Stop 3.3
(Figures 3.4.1). Permission to visit this outcrop must be granted by Camp Classen staff and an
online waiver completed for each visitor. Motor coach parking is possible. The Hunton contact
can be easily and clearly seen on the road entering the YMCA, less than 100 meters away on strike.
There is about 198ft/60m of Woodford exposed along creek, but only the upper reaches below the
spillway are usually dry and easily accessed. Frequent flows over the spillway, as well as the

indurated lithology, keep the outcrop well exposed.

1 &
~SH-77 . ©
To Dayis_:

.

=N
Sideroadto 3.4
' N

S &
| g

East Timbered Hills Anticline WASHITA VALLEY SYNCLINE B’

WASHITA VALLEY FAULT
Dy v Qo
r

Figure 3.4.1 Location maps with outcrop photo for Camp Classen / YMCA spillway. Other
Woodford outcrops in green text in black boxes, AWA- Arbuckle Wilderness Area, HOA-Heart
of the Arbuckles. AFP is Arbuckle Fried Pies. Location of section 3.3 is shown on the cross section
is projected SW about two miles.
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Figure 3.4.2 Photos of basal section at Hunton contact. Single organic-rich fissile black mudrock
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Flgure3 4 4 Interbedded S|I|ceous cherty mudrock (brlttle) and fISSIle shale of Un|t C of Aufill
(2007) Dashed box is flgure 3 4 5a

Flgure 3.5. 5 Close up of mterbedded cherty mudrock (C) and fissile shale. Sample YM-7, fissile
shale with fossil hash on bedding plane.
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The YMCA site (Hass-B location) is quite important because the Frasnian-Famennian extinction
boundary is well-documented here; it is about 53ft/16.15m above the Hunton-Woodford contact
(Figure 3.4.3: Hass and Huddle, 1965; Over, 1990; Crick et al., 2002). Lower Woodford is a
remarkably rhythmic succession of black fissile laminated siliceous shale and thin bedded black
to grey extremely siliceous mudrock and chert that can be divided into 9 units on the basis of
percentage of cherty beds, fissility, and bed thicknesses (Figures 3.4.3, 3.4.4, 3.4.5, 3.4.6). Many
of the bedding plane surfaces in the fissile shales have scattered fossil hash on them (Figure 3.4.5c).
Whilst there is a modest increase in the net shale and concomitant decrease in bed thickness above
the F/F at this location (Figure 3.4.6), one of the more remarkable features of this outcrop is the
rather unremarkable lithological expression of the Frasnian/Famennian (F/F) extinction boundary
(Figure 3.4.6).

Figure 3.4.6 Geologist standing on the F/F Boundary 16.15m above Hunton. Unremarkable sequence of brown-dark.
gray fissile siliceous-shale & medium dark cherty beds that make a small 1ib in spillway.




It is also significant that the Lower Woodford is more silicieous at this location than in the Wyche
core below the outcrop or at MCQ where the early transgressive sediments overlying the Hunton

are significantly more argillaceous.

Detailed geochemical work, such as XRF or biomarker analyses over this interval remains to be
undertaken. Aufil (2007) recorded a hand held gamma ray log over the section allowing it to be
tied into the regional stratigraphy There is an increase in the U/Th ratio (Figure 3.4.7) this could
merely represent an decrease in U associated with lower TOC in the less shaly rocks, as hinted at

in a very limited set of TOC data.

Figure 3.4.7:, YMCA/ Hass-B: Spectral gamma ray, magnetic susceptibility, net shale, and bed thickness data (Aufill, 2007).
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Figure 3.4.7 shows the lithology and gamma correlations between Hass-A (Henryhouse Creek)
and Haas-B (YMCA). Note that the F/F boundary is relatively close to the unconformity at the
top of the Hunton (see figure 2.1.7). Figure 3.4.9 shows the correlation of the F/F from the
YMCA section to the Heart of the Arbuckles (Stop 3.2).

The Devonian/Carboniferous boundary in the Upper Woodford has not been determined at any
locations of the north side of the Arbuckles. A conodont biostratigraphic study at Stop 3.3 (1-35N)
could yield a favorable result, but the inferred unconformity at the top of the Woodford indicates
the D/C boundary could be truncated there similar to the Wyche Quarry (2.1). We have included
the biostratigraphic correlations of the F/F boundary to Hass-A (Figure 3.4.8), detailed section at
Hass-A (Figure 3.4.9) and correlations to SH-77D (Section 3.3; Figure 3.3.10.).
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Figure 3.4.8 Correlation from Hass A (Henry House) to YMCA (Hass B) (Aufill, 2007). Note

phosphate nodules top of WDFD.
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Figure 3.4.9 Hass-A (Henryhouse Creek) lithology log, magnetic susceptibility, and gamma ray
profile (Aufill, 2007) with the F/F boundary of Over (1990)
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Cardott, 2008) and tentative correlation of F/F boundary using data of Over (1990).

108



Racki et al., (2018) document anomalously elevated levels of Hg and Hg/TOC at and just below

the F/F boundary at several locations in Germany, Morocco, and Russia, They attribute these

anomalies to volcanic activity and suggest this activity contributed to the mass extinction at that

boundary. Similar anomalies associated with the D/C boundary are reported by Rakocinski et al.,

2020), who also document elevated levels of the highly compound methylmercury. Figure 3.4.11

shows preliminary Hg data from the YMCA spillway. These data indicate some possible

anomalous points are present, but the section is clearly under-sampled. Further work is currently

underway to fill-in sampling gaps (2020 samples Figure 3.4.11).

Figure 3.4.11 Mercury and TOC data in Lower Woodford across Frasnian-Famennian boundary.
No clear anomaly, additional samples are being analyzed.

Hg vs m above HTN Hg pph/TOC vs m above HTN
2022 samples
20 20
18 ] 18 ]
16 E’ """""""""""""""""""""""""""""""""""""" e e
=] L ]
14 L] 14 ]
o 12 » 12
210 o 210
= o L = L
E g B < 8
6 7 . 6 L
4 4
2 2
0 0
0 50 100 150 200 250 300 0 10 20 30 40 50 60
Hg ppb Hg ppb / TOC
All samples exceed the 0.5% TOC cutoff for normalization
2020 ftabove  mabove
samples FM HTN HTN TOCwt% Hgppb Hgppm Hg ppb/TOC
YMCA  Y-1 WDFD 21 6.36 10.55 141 0.141 13
YMCA  Y-2 WDFD 30 9.09 3.3 161 0.161 49
YMCA Y-3 WDFD 47 14.24 9 135 0.135 15
YMCA Y-4 WDFD 50 15.15 7.75 225 0.225 29
YMCA Y5 WDFD 60 18.18 12.15 271 0.271 22
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3.5: 135-S (The Last Ridge) 2N-6E SW/NE Sec 2

This Woodford outcrop is a roadcut on the west side of 135-S along the last ridge on the southern,
back limb, of the Arbuckle Anticline on the north side of the Ardmore basin (Figure 3.5.1). Traffic
is heavy and moves very fast at the base of a long downhill section of highway. There is nearly
constant din which makes hearing any lecture difficult to hear. Although there is a very wide
shoulder, the pull out is still dangerous. The roadcut is somewhat steep with loose scree. For the

above factors this outcrop is better suited for smaller groups.

The earliest work was that of Robert Fay who prepared a guidebook for the Ardmore Geological
Society when 1-35 was first cut through the Arbuckle Mountains in 1970. The original guidebook
is out of print but was reissued by the Oklahoma Geological Survey (Fay, 1989). An important
feature of that work was the placement of a brass marker 9ft below the top of the Woodford(Figure
3.5.2b) that serves as a key datum for numerous subsequent studies. Cardott and Chaplin (1993)
report that the Woodford at this location is marginally mature: %Ro average = 0.5% n=77 with a
range of 0.43 to 0.65; Tmax average = 417°C. Becerra (2017) reported an average Ro of 0.6
calculated from Tmax. Conodont biostratigraphy places the Devonian-Carboniferous 9ft below the
top of the Woodford (Over, 1992).

The Last Ridge on 135-S also has an excellent section of Sycamore Limestone above the Woodford
and in Philips Creek, further up dip, there is a rare, well exposed, section of the Caney Shale with
a basal quartz arenite sandstone unit (Figure 3.5.2). The Henry House Creek (Hass-A of Over,
2002) and the Speake Ranch (Galvis, 2013) sections are 5mi and 11mi west, respectively, along
strike from the Last Ridge (see Section 3.6). Structurally, it should be noted that the north flank of
the Springer oil field can be mapped below the Last Ridge which implies the ridge is on the hanging
wall of a back thrust (Figure 3.5.1c and d).

Woodford Geological Features: The Woodford is about 290ft / 88m thick at this location but
much of the Lower and Middle Woodford are covered (Figure 3.5.2a). Most of the exposed section
us upper Woodford. There is about 10ft of cherty Lower Woodford above the unconformity with
the Hunton (Figure 3.5.3). The Upper Woodford is about 90ft thick, becoming more siliceous,
thicker bedded, and increasingly phosphatic upwards (Figure 3.5.2b).
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b) Geological and topographic location maps. ¢) Regional cross section showing

of the Sycamore Limestone (Miller and Cullen, 2018).

Last Ridge location (Ham

Figure 3.5.1 a,



>

N

330ft/100m

Figure 3.5.2: a) Oblique west-looking view of Hunton-Woodford-Sycamore-Caney section on
south limb of the Arbuckle Anticline b) Upper Woodford outcrop with footages from MFS of
Becerra (2017). Yellow dot is Ardmore Geological Society marker 9ft below top of Woodford.
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Figure 3.5.3 Photo of the unconformable contact between the Bois d’Arc (Hunton Group) and the
overlying Lower Woodford. “C” denotes chert beds. Note similarity to the brittle-ductile couplets
in the Lower Woodford at Camp Classen Spillway (Section 3.4).
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Figure 3 3 4) Outcrop photo 65- 75ft above the base of the Upper Woodford showmg the transmon
to a thicker more siliceous chert beds (C) with a greater abundance of phosphate nodules, P.

The most comprehensive study of the Upper Woodford on the Last Ridge is that of Becarra (2017);
157 samples were collected and studied using petrography supplemented with SEM, X-ray
diffraction, X-Ray fluorescence, source rock analyses (TOC and RockEval), micro-rebound tests
for rock hardness and uniaxial compressive strength tests for mechanical properties. Beccera
divided the Upper Woodford into 5 stratigraphic units (a-e) and 4 main lithofacies on the basis of
lithology, gamma ray, bed thickness patterns, and the percentage of brittle to ductile beds (Figure
3.5.5a and 3.5.5b). Consistent with other studies of the Woodford, Becerra also shows that %TOC
is preferentially enriched in the ductile, less siliceous beds (Figure 3.5.5c). Biomarker data from
Jones (2017) indicates there are several pulse of photic zone euxenia in the lower part of Upper
Woodford (Figure 3.5.6). Increasing Zr in the uppermost unit of the Woodford indicates increasing
land derived detrital input.
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Figure 3.5.6 Biomarker data indicating episodes of photic zone euxenia (PZE) and input of conifer
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There are several features worth additional discussion.

1. On figure 3.5.5 Unit-e (top of the section) has an elevated GR that corresponds to a higher
percentage of “hard” siliceous beds relative to lower section (Unit-a) where the elevated GR is
associated with shalier beds). Unit-e has elevated U, Mo, V, and P. These characteristics suggest
that the elevated GR in Unit-e may be elevated from incorporation of U phosphates and possibly
zircons rather than increased fixation by organic carbon.

2. Palynology data from 135-S could not resolve specific zonal boundaries but confirms the
uppermost part of the section is early Mississippian (Tournaisian) in age (Kondas et al., 2018).
The increased plant debris in the uppermost section carries a signal of regression and increasing
terrestrial input (Figure 3.5.6).

3. The interval of abundant phosphate nodules in the upper section is about 40ft thick. There has
been no systematic study and classification of the nodule morphology at this locality, but casual
observation indicates that spherical, concentric nodules are the most abundant type (Figure
3.5.7).

4. There is a strong mercury/TOC anomaly at the conodont biostratigraphically constrained D/C
boundary (Figure 3.5.8). Similar anomalies have been documented at at top of the Woodford at
McAlister Cemetery Quarry (Section 3.6, Cullen 2019). Similar anomalies at other global
locations have been interpreted as evidence for volcanism as a contributing factor in the D/C
extinctions (Rakocinski et al., 2020).

5. Lastly, in terms of normalized REE concentrations Upper Woodford phosphate nodules from
135-South (Figure 3.5.9) have similar relative distributions in the medium and heavy REE but

lower concentrations than nodules from other locations.
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Figure 3.5.7 Examples of spherical and elliptical & phosphate nodules with well expressed
compactional drape in mudrocks
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Figure 3.5.8: a) Upper Woodford mercury concentrations* vs. height above top of outcrop in
TOC to be considered reliable for normalization. c¢) Table of data
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Figure 3.5.9 REE data (ICP-MS) from phosphate nodules in the Upper Woodford at 135-S
normalized to North American Composite Shale (McLennan, 1987)

Sycamore at 1-35S: Included herein is a synopsis of the well exposed 327ft section of Sycamore
Limestone and Caney Shale above the Woodford along 135-S (Figure 3.5.10). This section has
been studied by Miller and Cullen (2017) and Milad (2020). Cullen (2019) discussed some of the
features a sandstone in the Caney (Delaware?) Shale along Philips Creek. From the top of the
Hunton to the Goddard shale one could easily take a half day to cover the full section.

First and foremost the Sycamore Limestone is a formal stratigraphic name, not an apt description
of this section. The section is compose a several rhythmically stacked lithofacies of calcareous
siltstones, cherty mudstones, and shales (Figure 3.5.11a). These are composed of detrital quartz,
carbonate peloids, with differing amounts of calcite cement and clay matrix (Figure 3.5.11 b,d). In
our estimation 50% of the calcite is cement in most cases. Sedimentary structures such as partial
bouma sequences, scours, clay draps, fining upward sequences strongly indicate these are
dominantly mass flow deposits (Figure 3.5.11d). Most beds are continuous and with uniform
thickness some beds are lenticular with swaley tops. Detrital zircon data indicate multiple North
American source terranes (Figure 3.5.11e).
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Upper Shale

3.5.10 Mosaic photo and arial view of Sycamore Limestone section at 135-S (west side)

Below the Sycamore there is are 87ft of transition beds in the basal part of the Sycamore. These
are lithologically similar to the greenish shales of the pre-Welden Shale on the Lawrence uplift,
albeit much thicker. Milad reports that this lower transition shale is 50ft thick at Speake Ranch.
The age of this section is not well established. It was not studied by Over. Early conodont studies
indicate this interval is Kinderhookian to Osagean in age and that basal Caney is Meramecian in
age (Ormiston and Lane 1976). Kleehammer (1991) concluded the Sycamore is largely
Meramecian and certainly no older than late Osagean on the basis of Gnathodus texanus-
Gnathodus girtyi conodont assemblages. A younger age is also supported by radiolarian
biostratigraphy indicating an age to be no older than Middle Meramecian (Schwartzapfel, 1990).
Thus, the basal Sycamore transition beds could be age correlative with the Welden and/or the pre-

Welden shale on the Lawrence uplift (see Section 1.3 figure 1.3.6.)
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of fining upward partial Bouma sequence e) Detrital zircon ages from Sycamore siltstone and

Figure 3.5.11 a) Measured section with hand held gamma ray profile b) thin sections (plain and
Caney shale.
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3.6 Additional Woodford Sections in Arbuckle Mountains: There are at least 3 well-exposed
sections of Woodford in the Arbuckle Mountains not covered in this guidebook (Figure 3.6.1) but
which may be added in subsequent editions.

1. Henry House Creek is the Hass-A site where Over (2002) placed the F/F boundar ~10ft above
the Hunton (Figure 3.6.2). This section was part of an excellent Master’s thesis by Aufill (2007).

2. The Speake Ranch section is about Smi west of Henry House Creek and 10mi west of 135-
South. Galvis (2017) completed a thorough characterization of the Woodford at this location
(Figure 3.6.2b). This section also has a well-developed transition zone between the Woodford
and Sycamore units.

3. The Arbuckle Wilderness Area (AWA) on the north flank of the Arbuckle anticline is less than
a mile SE of the I35-South location. The AWA section from the Viola through the Caney
(Sayeddolali et al., 2019) is reasonably well exposed. Surprisingly, no specific studies have been
published at the AWA.

Figure 3.6.1 Location map for other Woodford sections not covered in this guidebook: 1)
Arbuckle Wilderness Area, 2) Henry House Creek (Hass-A), 3) Speake Ranch
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4.1: McAlister Cemetery Quarry / Ardmore Basin

The McAlister Cemetery Quarry (MCQ) is 19mi/31km south of stop 3.5, last ridge of 1-35S, and
is the southernmost exposure of the Woodford in Oklahoma (Figure 4.1.1a). In addition to its
strategic location, easy access & parking, and good exposures make the MCQ a subject of
numerous studies on subjects ranging from lithofacies, sequence stratigraphy, geomechanics,
organic geochemistry, and the genesis of calcite and phosphate concretions (Kirkland et al., 1992;
Krystyniak, 2005; Walker, 2006; Paxton and Cardott, 2008; Boardman 2012, Bernal, 2013;
Ekwunife, 2017; Klockow, 2017; Martin, 2017; Philp and DeGarmo, 2020). Ekwunife (2017) is

the most comprehensive study to date in terms different analytical methods.

At the MCQ a 380ft/115m thick complete Woodford section about is exposed on the northeast
limb of a regional Pennsylvanian-age structural feature, the Criner Hills-Overbrook anticline
which rises through a breach in the Cretaceous onlap succession (Figure 4.1.1b and 4.1.1c). Most
of the quarry is flat with several low-relief berms of more resistant rock in the Middle Woodford.
The northeast edge of the quarry is a small hill of uppermost Woodford and Sycamore (Figure
4.1.2). Dips range from 35° to 45°. The Woodford at the MCQ is marginally mature, 0.52% Ro
(Paxton and Cardott, 2008). The Woodford at the MCQ is marginally mature, 0.52% Ro (Paxton
and Cardott, 2008). On the basis of lithology, bedding thickness / degree of fissility, and gamma
ray character Ekwunife (2017) divided the Woodford into Lower, Middle and Upper members and
place them in a regional stratigraphic context including defining the maximum flooding surface at
the Middle-Upper Woodford contact (Figure 4.1.2b). These also tie into the conodont
biostratigraphy by Over (1990; 1992, 2002) which define the D/C boundary and the F/F boundary

near the top and base of the Woodford respectively.

The unconformable contact between the Hunton Group limestones and the overlying Lower
Woodford is covered but well-constrained (Figure 4.1.3a). The basal Woodford section (~20ft)
is a light gray to white, organically lean, clay-rich, unit with a few dark gray fissile shale beds
(Figure 4.1.3b) and very rare phosphate nodules (Figure 4.1.3c). From a palaeoceanographic /
sequence stratigraphic perspective this unit likely represents the earliest oxygenated shallow water

deposits of the initial marine transgression over the unconformity at the top of the Hunton Group.
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Figure 4.1.2: a) Oblique aerial view of the northern part of the MCQ with stratigraphic contacts &
GR gamma ray log, data displayed, are adapted from Ekwunife (2017). White boxes w/ arrows
indicate photos in figures. b) Outcrop GR log; CS is condensed section; MFS is the regional
maximum flooding surface. ¢) Table of fissility & parting thickness d) Abundance of the 5
dominant lithofacies in each member (technically “bleached’ is not a lithofacies). e) Histogram of
bed thickness & classes of the 3 Woodford members f) TOC distribution by Woodford members.

The Lower Woodford is about 140ft/42m thick (Figure 4.1.2a) and is composed of light gray to
black laminated to papery argillaceous shale and mudrock. Several mudrock beds in the lower part
of the Lower Woodford have a light green surface patina but are dark gray on fresh surfaces (Figure
4.1.5). In contrast to outcrops in the Arbuckle Mountains, there is very little chert in the Lower
Woodford in the MCQ. Consequently, in outcrop differences between the Lower and Middle
Woodford (Figure 4.1.6) are difficult to detect without analytical data (XRF, TOC, GR, etc) and
the boundary between these units is picked primarily of the pattern of the outcrop gamma ray
(Figure 4.1.2c).
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Figure 4.1.3 a) Hunton-Woodford contact on west side of quarry. b) Photo of hand sample of
basal/transitional Woodford ¢) Photo of rare phosphate nodules in basal/transitional Woodford.
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Figure 4.1.4: Typical Lower Woodford thin bedded to papery siliceous silty shale weathered
surface is to white and light grey, fresh surface dark brown to dark grey (sample M-10). Notable
lack of chert, ruler is 12cm.

Figure 4.1.5: Lower Woodford
greenish shales that are dark grey
to black on fresh surfaces for
sample MY.
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Figure 4.1.6: Typical Middle thin bedded to papery siliceous silty shale and mudrock on small
upraised rib (mound); presumably more siliceous and resistant to erosion than surrounding section.

The Middle Woodford is approximately 100ft/33m thick and is composed of organic-rich
argillaceous and siliceous mudrock and shale with siliceous mudrock being the dominant
lithofacies (Figures 4.1.2 a,b,c). The upper Middle Woodford (UM ~160-230ft) shows an increase
the gamma ray (Figure 4.1.2b) that may reflect an increase in clay content as well as potential TOC
and mineral accumulation at the MFS. That interval also has several sets of beds with strong
surface iron oxide staining (Figure 4.1.7 and 4.1.8) indicative of the weathering of pyrite, an
interpretation supported by limited XRD data (Figure 4.1.8b) and elevated S and Fe concentrations
of XRF data (Figure 4.1.13a). This pyrite is also indicative of a change in paleooceanographic

environment supported by the organic geochemistry data (Philp and Degarmo 2020).
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The Upper Woodford is approximately 125ft/38m thick. As seen at Sections 3.1, 3.3, 3.5, the
distinctly more siliceous nature of Upper Woodford is marked by overall lower GR readings
(Figure 4.1.9b) and a distinct increase in the Si/Al ratio (Figure 4.1.13a). In the Upper Woodford
the beds are thicker with more flaggy mudstone and slabby chert (Figures 4.1.2d and 4.1.2d). At
the MCQ the Upper Woodford is associated with appearance of abundant, mostly spherical,
phosphate nodules. An upward increase in the abundance and size of the phosphate nodules in the
uppermost Upper Woodford at the McAlister Cemetery Quarry is coincident with an increase in
the abundance and thickness of chert beds starting about 320ft (Figures 4.1.2e, 4.1.9b, 4.1.10b).

Sycamore Ls.

b)385

~370
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chert

275 A
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I sivceous mudshale [ Avgiiaceous mudshate [l Dotomitic shate
I siticeous Mudstone Clayshale B sitty uimestone
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© Phosphate [ pyrite
nodules from Boardman, 2012

Figure 4.1.9 a) Oblique view of NE quarry wall and bleached Upper Woodford b) GR log and
lithofacies of Upper Woodford (Ekwunife, 2017) b) GR log and lithofacies (Ekwunife 2017. Gray
star ~370ft denotes grey mudrock in “bleached zone” ¢) Lower U. WDFD at base of small hill 1%
phosphate nodules at M-17 d) Minor folds near top of the Upper Woodford on NE wall. €) Large
(7cm diameter) phosphate nodule from “bleached” zone. Note faint concentric banding and the
sample bag for comparative scale the nodules near sample M-17.
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Figure 4.1.10 a) Spherical phosphate nodules in the Upper Woodford. b) Photo of small cliff face
of Upper Woodford in the “bleached” facies. which does not appear as vertically extensive as
shown on Figure S7-9b; C denotes chert beds. c) Conformable transition from gray to bleached
beds d) Sycamore contact with thin pre-Sycamore greenish mudrocks (Fig. 33: Ekwunfie, 2017).
Note the lack of bleaching.
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A striking and unusual feature of the MCQ is a 55ft white interval at the top of Upper Woodford
(Figure 4.1.2a and 4.1.9b). This interval has a 5x increase in Si/Al and much lower TOC, S, Fe, and
U lower values than in the Middle and Lower Woodford (Figure 4.1.12a). Kirkland (1992) suggested
that this whitening is the result of bleaching and oxidation in the Pleistocene and also stated that
bleaching of the Upper Woodford occurs elsewhere. However, no other locations were given, and
Kirkland’s reference is a personal communication with no additional information. We know of no
other locations where this interval is present. There are several features of this white zone that lead us
to question the relatively young bleaching interpretation. First, exposures in the wall of small south-
facing cut wall shows that the gray to white transition appears to structurally conformable (Figure
4.1.10c) rather cross cutting as would be expected if bleaching post-dated deformation. Second, at
the contact with the Upper Woodford a thin light green shale (pre-Welden equivalent?) and the
Sycamore Limestone show no evidence of bleaching (Figure 4.1.10d). Third, there are rare thin, grey
siliceous mudrocks in the upper part of the interval and several sharp high gamma ray zones (Figure

4.1.9b) indicating deposition under more reducing conditions.

Chemostratigraphic data yield an alternative explanation. Based on XRF elemental chemofacies
Ekwunife (2017) concluded that the Upper Woodford experienced mostly open circulation (Figure
4.1.12b), which would account for the lowered preservation of organic carbon in the Upper
Woodford. Although the elevated Ni/Co ratios indicate anoxic conditions (Figure 4.1.12c) both of
these elements are in extremely low abundance, rendering those ratios suspect. Increasing open
circulation is supported by biomarker data in Philp and Degarmo (2020) and Parks and Lui (2023) at
Wyche Quarry, particularly of isorenieratane and related biomarkers that indicate photic zone euxinia
decreased dramatically in the upper Woodford. As an alternative to Holocene bleaching model, we
propose the white zone the McAlister Cemetery Quarry resulted from a shift in depositional
conditions in the Latest Devonian. This could be consistent with models related to a fall in sea level
and influx of terrigenous material and more oxygenate water shallow sources or possibly the
encroachment of oxic deep marine bottom water as indicated by the section at Scratch Hill (see
section 5.2) where most of the Arkansas Novaculite was deposited in non-reducing conditions.

Clearly this interval at the MCQ is worthy of further study including stable isotopes.

In addition to its large phosphate nodules several very large calcite-dominated mega-concretions

(up to 5ft/1.5m in diameter; Figure 4.1.8) have been dug out from the Upper Woodford near the
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base of the interval with abundant phosphate nodules (Kirkland et al., 1992). These concretions
have relict bedding and precipitated around phosphate nodules indicating they are a post-
deposition diagenetic event (Figure 4.1.11a and 4.1.11b). Internally, well-preserved radiolarian
tests indicate the nodules grew before significant compaction. The well-defined increasingly light
dC13 values from core to rim may reflect an increase in carbon related to sulphate reduction
(Kirkland et al., 1992). These carbonate concretions typically have hematitic calcite rinds with
very light 3C13 values. Trace element concentrations (V, Ni, Mo) increase in the sparry rinds,
indicating an increase in metal availability during rind growth. These rinds have been interpreted
as recording a Cretaceous event (Figure 4.1.11d; Martin, 2017). One of the enigmatic features of
the calcite concretions is the presence of several normal marine infaunal fossils which are not
present in the Woodford mudrocks (Figure 4.1.11e). Whether these were washed in or lived in-

situ these fossils point to a brief interval of a shallow water open marine conditions.

AMass 1_nucleus
B@Mass 2_nucleus
®Mass 3_nucleus
AMass |_outer rings
@ Mass 2_outer rings
©Mass 3_outer rings

AMass 1_sparry rind
[@Mass 2_sparry rind
©OMass 3_sparry rind

813C (%o V-PDB)

Polished slab from Mass 1 containing a nucleus, outer rings, iron-
oxide stained matrix, calcite-filled vugs and sparry rind with
hematitic layer. Red circles denote sample locations for
geochemical analysis (Martin, 2017). 25

Martin (2017) Figure 48. 513C values 3 carbonate showing
overall enrichment in §13C from the nucleus to sparry rind.
Inset box shows paragenetic sequence indication a long and
complex evolution.

»s £  Coral fossil

Figure 4.1.11: a) Large calcite-rich concretion b) Close up of a) showing embedded phosphate
nodules (P) and relict bedding- yellow dashed lines ¢) Example of banding in Ca-nodule with outer
rind d) Carbon isotope variations for 3 carbonate masses shower lighter values from core to rim
with sudden jump at rim. Inset box indicates paragenetic sequence. €) Enigmatic infaunal fossils-
bivalves and coral.
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The MCQ outcrops also feature bitumen filled fractures and small tar balls (Figure 4.1.13a and
4.1.13b). The tar balls occur on bedding planes and likely represent biodegraded hydrocarbons
from a submarine seep (Kirkland et al., 1992).. One of the most photographed features at the MCQ
are the visually striking bitumen-filled fracture sets exposed on bed tops (Figure 4.1.13). These
fractures have an extremely limited extent. Considering the difficulty for oil to migrate into the
Woodford, the limited extent of bitumen filling coupled with the low level of thermal maturity at
the MCQ and extremely small S1 yields in Rock Eval (Figure 4.1.12d) suggest that the bitumen is
in-situ early generated oil rather than migration from deeper in the basin.

Rl £ <
GRlge) Uiohdes g ooy AP g B T S O S e TOC(Wt) o 0Pl ) " Wl o g OO g el S, Rl
Si/Al | l | NP Co ] s Fe
13 s (’ E 15. i ! lge— e !
S p 1 |
{ = 1 ka1 " » »
r g [ Mo | Upper
= i3 U o |
o lpper . {
" :_ 0 » » ,'M"" & ; % ni » » HM" N
- - Shale " |
! = W |
ib [ 3 F] = ® ]
s §= i : i ! mfs
) | o i l |
Gl LB LELET & |3 L =L
i p it Widde
I 20 . O 19 0 . Midde | ,L (0 A | SR SN ¢ =N SN S S £l 3 Woodtond |
. ® ] Woodford T st ® @ Shale
Shale ' I |
— — ! % {
L =2 O a1 alt @ m: 1
" 1 1{
?lwm Zé ] Lower
— P
il » Fowdod | o |° ¢ sE ol3 oot
£ | e SR F TF/F
é_ ‘ %,.,.4 St \g———o———« e ._.._.TSE 0 L.-.—--—-‘y :-z—————v L} 0 0 0 | L}
23 mwews © memmm 1 W a0 w0 W s e et W 3 Lﬂ e ‘{*“"n poriid ]'f"""—mm
b) GR(cps) lithofacies  TOC(wt%) Chemofacies Sub Average Dominant Degreeof C) Suboxic to Anoxic 57
units  TOC  Lithofacies  Ancia
£ \ - ) -
Upper — "’:D 01% Pure open
— i circulation
Woodford 33 ? ﬁ . Cherts :
Shale
" WD gy Siiceous | Periodic uw
s I;,. . 5 Mudstones | anoxia
m .'/ Argllaceous Persistent ? n
Middle M ‘";D 3% pichales | 208 E
Woodford (euxinia) <,
shale  yg5 ; H Mw
Y = w siliceous 3
* = ¢ B3P pudshales | Periodic
10 anoxia
rL - (euinia)
Lower ! B D e Skeos o
Woodford ss . Mudshales .
Shale / initiati
L] W:D 0.28% Clayshales :;.,,;:
* 0 30 50 70
0 1500 3000 0 1020 .
Ni/Co

Figure 4.1.12 a) XRF data with red-ox sensitive elements in green to right (combined figures from
Ekwunife, 2017). b) Chemofacies from XRF data (figure 51 Ekwunfie, 2017) ¢) Ni/Co data is
used as a proxy for degree of anoxia (Bernal, 2013). Although the high Ni/Co ratios in the bleached
zone appears inconsistent with oxic bottom waters discussed above, this zone has extremely low
Ni and Co concentrations that render the ratio suspect.
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o
o W

- L
Paxton and Cardott (2008)

Figure 4.1.13 a) Bitumen-impregnated fractures on a single bedding plane b) Tar balls on bedding
plane c¢) Fracture set strike directions. d) RockEval and TOC data from MCQ, e) Closer view of
limited extent of bitumen-filled fractures.

Biostratigraphically the MCQ is an important location. Conodonts from the MCQ outcrops,
studied by Over (1990, 1992, 2002).
boundary Over (1992) reported poor recovery from Upper Woodford shales but did find Devonian

S1 S2 S3 Tmax | %Ro- | TOC (%
(mg/g) |(mg/g)| (mg/g) (c) Tmax wt) HI
12.80
15.90
455 | 7354 0.62 413.0 | 027 12.00 | 613
10.70
16.70
3.90 |[84.14| 5.44 413.0 | 027 2350 | 358
13.10
7.01
6.04
568 | 78.88| 1.99 420.0 | 0.40 14.60 | 540

Given the limited extent of these
fracture sets, please only take
photographs and help preserve
our common geological heritage.
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conodonts from one of the calcite concretions. Recall that these concretions were not in place, but
the quarrymen noted they came from near the base of the phosphate zone. Thus, the D/C boundary
at the MCQ could be present in the upper 50ft of the Woodford in a similar position to Section 3.5,
[-35S Last Ridge.

As noted regarding the Wyche Quarry, the unpublished part of Over’s dissertation (1990)
addressing the Frasnian-Famennian boundary is often overlooked. Atthe MCQ Over (1990, 2002)
conodont biostratigraphy places the F/F boundary ~39ft/11.8m above the Hunton contact (Figure
4.1.14a) which is 220ft/67m beneath the boundary as interpreted by Bernal (2013) and Molinares
(2019) who, ignoring the work of Over, used Transgressive-Regressive cycles and multi-proxy
methods. It follows then that Philp and DeGarmo’s interpretation of biomarkers indicative paleo-
wild fires associated with the F/F boundary event is not correct (Figure 4.1.15). The increase in
the combustion proxy used by Philp and DeGarmo (2020), however, is consistent increased
terrestrial input during a fall in base level during the Famennian Wildfire Event (van der Meer et
al., 2022; Lu et al., 2021).
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F/F is 220ft deeper
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Figure 4.1.15 Philp and DeGarmo (2020) showing influx of paleo-wildfire detritus as inferred from
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biomarker data. The F/F boundary should be placed much lower (Over, 1990, 2002).



Lastly, we consider the case for using mercury as an indication of volcanism as a major driver of
the F/F and D/C extinctions, as suggested by Racki et al., (2018) and Rakocinski et al., (2020),
respectively. At the MCQ the Frasnian-Famennian boundary is well constrained. The Devonian-
Carboniferous boundary is inferred to be in the uppermost Woodford at the MCQ. This permitted
sampling for Hg anomalies to test the volcanic trigger hypothesis for the Late Devonian Mass
Extinction events to be focused on those boundaries (Figure 4.1.16a and 4.1.16b; Cullen, 2020).
There are small Hg and Hg/TOC anomalies around the F-F boundary at the MCQ, as seen at the
Camp Classen section (3.4), but the anomalies are rather low to assign much confidence that they
are related to volcanism. Samples from the base of a cherty phosphatic lithofacies in the Upper
Woodford near the Devonian-Carboniferous boundary show world class enrichments in Hg and
Hg/TOC (Figure 4.1.16c). Although these enrichments that are supportive of the volcanic
triggering hypothesis recent studies involving Hg isotopes Zhang et al., 2021) suggest that further
work is needed to test the volcanic triggering hypothesis vs. terrestrial input. An important issue

to consider is whether terrestrially-derived Hg could overwhelm the input from volcanic aerosols.
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Figure 4.1.16 a) Mercury and TOC data from McAlister Cemetery Quarry (Cullen, 2020) b) Hg,
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methylmercury and TOC data from Europe (Rakocinski et al., 2020)
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4.2 Marietta Basin: Jetta Core Grayson County Texas

The Marietta basin is essentially a southeast plunging synclinorium on a regionally uplifted block
bounded by the Criner Hills-Wichita fault(s) to the NE and the Muenster thrust to the SW (Figure
4.2.1a and b). The basin extends across the Oklahoma-Texas state line and is largely concealed by
flat-lying Cretaceous-age marine sediments. In Love County Oklahoma, adjacent to the Texas
State line, the 45° to 50° API gravity window is between 14,000ft and 16,500ft, much deeper than
the in main part of the Woodford play to the north where that APl window is between 12,0001t
and 13,000ft (Cullen, 2018). We attribute deepening of the maturity window to a lower geothermal
gradient possibly due to the observation that the much of Marietta basin appears to be floored by
Grenville metasediments rather than igneous rocks (Figure 4.2.1).

The Woodford does not crop out in or around the Marietta basin. However, Jetta Operating
Company (Ft. Worth TX) cored 127ft of Woodford in Grayson Co, TX; hereafter referred to as
the Jetta core. Jetta Operating Company has completed several Woodford wells which, to our
knowledge, is the southernmost Woodford production. Brito (2019) made extensive use of the
core taken by Jetta Operating Company. We have included a brief discussion of the Jetta core as
it represents key data to extend the regional picture further south into deeper paleo-water depths.
Although the upper 50ft of Woodford was not cored, the well and core permit making several key

observations.

1. The lithologies and vertical succession represent the same 5-6 basic lithofacies and
mineralogy present up dip (Figure 4.2.2a, 2b), implying a continuum of controlling
depositional process.

2. Chemostratigraphic data show an upward increasing Si/Al similar to the up dip outcrops
(Figure 4.2.3

3. Core data show the Upper Woodford is chert-rich and has relatively abundant round
phosphate nodules similar to up dip outcrops (Figure 4.2.3) that are distinctly black (4.3.4).

4. In the Upper Woodford decreasing % TOC correlates with lower gamma ray readings. The
gamma ray readings continue to decrease (<100API) above the cored interval; presumably

TOC decreases as well.
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Lithofacies Proportions in the
Marietta Basin Woodford Core
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Figure 4.2.4 Photographs of dark phosphate nodules associate with black chert in the Upper
Woodford (Brito, 2019).

Thus, the upper part of the Jetta core has similar features as the top of the Woodford section at the
MCQ. Whether whitening is present in the uncored section is not known, but the data do support
the notion of greater open marine circulation and more oxic conditions.
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5.1 Wapanucka Shale Pit: The Wapanucka shale pit (SW/SW Sec. 26 T2S R8E) is about 20mi
SE of the Wyche Quarry (figure 5.1.1a). The pit is cut by Rock Hill Road about two miles south
of the intersection of OK48 and SH7 in the town of Wapanucka (Figure 5.1.1b, 1c). Although Rock
Hill Road is relatively narrow dirt road, infrequent traffic makes it suitable for large groups. The
shale pit is inactive and judging from the overgrowth it appears to have been dormant for quite a
while (Figure 5.1.1d). Here only the Upper Woodford is exposed, including a substantial portion
in the Carboniferous not present further West, the Lower and Middle Woodford are covered. The

better exposures are on the north side of Rock Hill Road.
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Figure 5.1.1 a) Regional and local location maps, WAP-Wapanucka, X marks shale pit. b) Google
Earth image locating shale pit in relation to Rock Hill Road ¢) Photo of siliceous mudstones in
Upper (Mississippian) Woodford, N26°W dipping 20°E. Photo is southeast looking, note partial
grassy cover.

The Wapanucka shale pit has an interesting structural setting. The pit lies near the SW edge of the
Arkoma Basin on the downthrown side of the Sulphur fault (Figure 5.1.2). The Sulphur fault, or

more accurately the Sulphur fault zone, strikes WNW and can be traced at the surface more than
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50mi. Near the shale pit there are two faults. The first juxtaposes the Blue River Gneiss (Figure
5.1.3a) against steeply dipping (~75°) Cambrian carbonates (Figure 5.1.3b). Along second, more
northerly fault, steeply dipping Cambrian carbonates abut modestly dipping (~20°) Woodford
Shale. The Peters-1well less than a half mile SW of the shale pit, spudded on the Mesoproterozoic
Blue River Gneiss, drilled 775ft of basement before crossing the fault into Paleozoic carbonates.
Data from the Peters-1 well show it is a reverse fault dipping 45°S (Figure 5.1.2 inset to right).
Two major unconformities can be examined in this area: U-1) The Cambrian age Timbered Hills
Group rests nonconformably on Blue River Gneiss, no rhyolites are present at the base of the
Timbered Hills Group, and U-2) The relatively flat-lying Cretaceous-age Antlers Sandstone rests
on both the Blue River Gneiss and the Antlers Sandstone.

Y Peters-1 S % NE NE 34 2S 8E
7 750ft granite / Thrust
"[|Wapasucka | TD 1873ft in Pz sediments

Surface trace
750’ NE
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N AN Mc
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1mi / 1.6km Part of Ham F-F’

feet

Figure 5.1.2 Geological map and cross section of Wapanucka area (Ham, 1956). Data from Peters-

1 well is from Ham et al., 1964).
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Figure 5.1.3 a) Photos of Mesoproterozoic Blue River Gneiss, b) Photo of steeply north-dipping
Lower Arbuckle Group carbonates.

Over the prior several decades several studies of the Woodford have included the Wapanucka shale
pit location. Siy (1988) published a stratigraphic section of the shale pit that placed the Devonian-
Carboniferous boundary(DCB) about 8m above the base of the section in a greenish-gray shale at
the top of an interval rich in phosphate nodules. On the basis of conodont biostratigraphy, Over
(1990 and 1992) confirmed the DCB in the Wapanucka shale pit is about 23ft/7m from the base of
his measured section at the occurrence of Siphondella suculata (Figure 5.1.4a and Table 5.1.1) It
is interesting that Siy’s study pre-dates the biostratigraphic work Over (1990, 1992) and that the
Wapanucka site was not included in Hass and Huddle (1965). We speculate that Siy positioned that
boundary based on regional correlation with the nodule-rich siliceous Upper Woodford section
dated on the Lawrence Uplift, the Arbuckle Mountains, and the Criner Hills (Hass and Huddle,
1965). Unlike those locations, however, the Wapanucka shale pit has a relatively thick section

(~90ft) Early Mississippian, Kinderhookian-age, Upper Woodford.
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Figure 5.1.4 a) Lithologic column and conodont interval from Wapanucka shale pit (Over, 1992),
b) Measured section and spectral gamma ray log (Puckette et al., 2013). Inset yellow boxes

Puckette et al., (2013) provided a detailed measured section tied to an outcrop spectral gamma ray
log (Figure 5.1.4b). Below the DCB, the lower 25ft of section consists of chert interbedded with
siliceous mudrocks that bear abundant phosphate nodules (figure 5.1.5a). The nodules tend to be
spherical to elliptical and some are concentrically banded (Figure 5.5a inset). The overlying
Mississippian section has only a single, thin, phosphate nodule-bearing bed (Figure 5.1.5d). The
Wapanucka shale pit was one of several sites Ellis (2013) used to conduct cyclostratigraphic study
of the DCB, but those data did not yield sufficiently robust result to refine correlations and ages

on a regional scale.

Although the overlying section has fewer chert beds, there are several thick intervals of well-
developed brittle ductile couplets (well exposed in the pit face; Figures 5.1.5b, 5¢) that could be

suitable for horizontal well landing zones. Unfortunately, it is not clear based on the U/Th that
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these beds contain sufficient TOC and a similar pore system to other Woodford wells given the
low U/Th ratio from the gamma ray as U is generally the TOC proxy (Figure 5.1.4). We also note
that single sample from the Wapanucka shale pit had 13.7% TOC (Siy, 1988) and a visual Ro of
0.56% (Cardott and Comer, 2021).

Figure 5.1.5 a) Photograph of lower section of siliceous shales with abundant phosphate nodules
interbedded with chert, b and c) Photos an interval of brittle-ductile couplets in the upper
(Kinderhookian) section exposed in the pit face, d) Thin nodule-bearing bed in upper section. The
nodules are relatively small. Note the secondary calcite of the bedding plane surface.

Puckette et al., (2103) correlated the Mississippian interval at the Wapanucka shale pit to a nearby
industry well (Figure 5.1.6). This thick Mississippian interval has an overall lower gamma ray and
lies above the traditional Upper Woodford of the Arbuckle Mountains and Ardmore basin. The
very high gamma ray associated with the Woodford maximum flooding surface and the top Hunton
can be projected into the Wyche-1, albeit with some uncertainty. The lower gamma ray of

Mississippian interval at the shale pit resembles the interval in the Wyche-1 core that Turner et al.,
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(2015) interpreted as pre-Welden shale. These correlations are problematic with respect to the

Over’s (1992) interpretation that the DCB is truncated at the Wyche Quarry.
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Figure 5.1.6 Gamma ray log correlation from Wapanucka shale pit to the Wyche-1 on the Lawrence
uplift. Modified from Puckette et al., (2013).

Over, 1992 SAMPLE WEIGHT (kg) 1.2 0.8 2.0 2.0 2.0 3.9 03 1.3 0.7 1.1
SPECIES SAMPLE 16 17 18 19 20 21 22 25 31B 31C
Bispathodus stabilis Morphotype 1 14 73 18 - - 4 19 2 - - - - -
Polygnathus symmetricus 6 14 3 - - D! s w o om e S e
Pseudopoygnathus marburgensis trigonicus 1 13 - - - - - - - - - - - S RS
Branmehla inornata - - 7 2 -- 2 7?7 -- - e -
Palmatolepis gracilis gracilis -- 2001 -- 7 - - - $e o=
?Pelekysgnathus guizhouensis? o mm (A e m = oe =a - sd B
Polygnathodus communis communis - - - - 1 -- 5 -- 3 @ 2@ =
Siphonodella praesulcata em omm B mm se b B 5% B
Protognathodus collinsoni ik omE mE == 13 B = = $iE  m @
Protognathodus kockeli - e e e e e = 2 i s & = 5iE =
_Protognathodus sp. B s EE EE s E 3 i = @ B
Siphonodella sp. (sulcata?) T T 5 e e
Siphonodella cooperi Morphotype 2 - - - - - -Carboniferous - - - - - - X X

Siphonodella obsoleta - - Kinderhookian / Tournasian species- - -  x X

Siphonodella sp. o e W o me S e E e e s om R X

Table 5.1.1 Conodont biostratigraphy at Wapanucka shale pit (Over, 1992)
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5.2 Scratch Hill: Ouachita Thrust Belt

Scratch Hill, just outside Atoka, OK about 18mi east of the Wapanucka Woodford section, lies at
the south end of Black Knob Ridge where the Choctaw fault becomes covered by the present-day
erosional edge of the Cretaceous onlap sequence (Figure 5.2.1a and b). This location is a quarry
with good access and parking. The Arkansas Novaculite and older units of the deepwater
“Ouachita Facies” have been brought to the present surface by the Choctaw thrust, the leading
edge of the Ouachita-Marathon fold/thrust belt (Figure 5.2.1c). The outcrops along Black Knob
Ridge have thrust a minimum of 92mi/150km from their original depositional position relative to
the “Arbuckle Facies” (Arbenz, 2008), as shown by the Sohio 1-22 in McCurtain County which
drilled through upper plate Ouachita facies rocks into subthrust “Arbuckle facies” rocks. This
shortening must be accounted for when considering paleoceanography models for Devono-
Mississippian upwelling and oceanic stratification models. The equivalent formation in Texas is

the Caballos Novaculite in the Marathon thrust belt.

Scratch Hill is just east of Atoka, OK, and is cut by Court Road (figure 5.2.2a, b). There are small
quarries in both the Big Fork and Arkansas Novaculite (Figure 5.2.2c). Well and seismic data in
the area demonstrate that the “Ouachita facies” rocks have been thrust over the block faulted
Arbuckle-Woodford section which represent footwall targets for petroleum exploration (Figure
5.2.3). From a petroleum geology perspective, it should be noted that these cherts produce as
fracture reservoirs in crests of toe thrust anticlines the Isom Springs and several fields in west
Texas (Godo et al., 2011).

Regional mapping along Black Knob Ridge shown in the OGS state quadrangle geological map
(Chang and Stanley, 2003) reports that the Arkansas Novaculite is composed of 4 units: 1) The
lowest member composed of thin bedded, light gray to apple-green novaculite, interbedded with
hard green shale makes up about half of the formation, 2) light gray to black novaculite with thin
beds and partings of black shale, 3) Red and green, micaceous shale intercalated with thin beds of
novaculite and black, blocky shale, 4) the upper member consists of thin to medium green, brown,

and gray novaculite.
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Figure 5.2.1 a, b) Location map with key geological features for Scratch Hill and the Ouachita

fold and thrust belt. ¢) Interpolated gamma ray stratigraphic section show correlation between the

Arbuckle and Ouachita facies rocks.
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Figure 5.2.3 a, b) Local geological map and cross section for Scratch Hill c) Regional cross section

illustrating upper plate unconventional play concepts.

Measured sections at Scratch Hill (Figure 5.2.4) indicate only the lower three units from Chang
and Stanley appear to be present (Barrick and Haywa-Branch, 1994; Cullen and Miller, 2020).
The description found in Cullen and Miller, 2020 for these units and sub-units are as follows: Unit
1a (0-59ft) is primarily couplets of thin to medium bedded grey chert with about 15% laminated
mudrock (Figure 5.2.5a,b) Figure 7b). Unit 1b (59-122ft) is thin to medium bedded light grey chert
with about 30% mudrock including distinctly green mudrocks (Figure 5.2.5c). Unit 2 (122-210ft)
is primarily couplets of thin to medium bedded grey chert with about 15% laminated mudrock
similar to the Lower Arkansas Novaculite. Near the top to Unit-2 there are two intervals with
notable beds of black chert and siliceous mudrock Figure 5.2.5d). Unit 3 is dominated by red and
green siliceous mudstone and rare thin chert beds (5.2.6.). The more argillaceous nature of unit 3
can be seen on XRD data (Figure 5.2.7a). Source rock / Rock Eval data Figure 5.2.7b, c) show
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there are thin intervals of good source rock and that the section is in the early oil window (%R0

calculated 0.53-0.65).
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Figure 5.2.4 Correlation of sections measured by Barrick and Haywa (1994) and Cullen and Miller
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Figure 5.2.53, b, ¢, d) Photographic of basic lithofacies at specific footages on measured section
of Cullen and Miller (2020).

Barrick and Haywa-Branch (1994) provide
important conodont biostratigraphic data
that show the Scratch Hill section ranges
from Early to Late Devonian in age and that
the Frasnian-Famennian boundary below
the base of the red and green siliceous
shales of Unit 3. Thus, the upper section at
Scratch Hill corresponds to the Lower
Woodford in the Arbuckle Mountains
Figure 5.2.8. Figure 5.2.6. Photo of Unit-3 red and green mudstones
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|SAMPLE ID [ a4 [ o |
| EAQ | EAQ |

NON-CLAY FRACTION

Quartz 60.6 37.2

K-Feldspar 19 0.3 ) "

Plagioclase 0.1 0.1

Apatite 0.2 00 -

Pyrite 0.0 0.0

Marcasite 0.0 0.0

Calcite 0.2 0.1

Dolomite 0.5 0.4

Hematite 0.0 24

TOTAL 63.5 405

CLAY FRACTION

Mixed-Layer ILLITE/SMECTITE R3) 7.7 8.1

lllite+Mica 28.0 51.0

Chlorite 0.3 0.5

Kaolinite 0.5 0.0

TOTAL 365 595

GRAND TOTAL [ 1000 [ 1000 |

EAQ-4 EAQ-9
b) Chesapeake RTC <) ALS Labs Reno NV
Tmax | Calc. [TOC (% TOC

SAMPLE | (°C) | RoTmax | wt) HI SAMPLE | Wt% |Hg ppb|Hg/TOC
EAQ-3 427 0.53 0.12 298 EAQ-195| 20.6 1115 54
EAQ-4 0.00 EAQ-185| 0.04 33 825
EAQ-6 0.08 EAQ-180| 0.05 36 720
EAQ-7 0.34 EAQ-160| 0.06 389 6483
EAQ-8 433 0.63 5.19 510 EAQ-15 | 0.14 31 221
EAQ-9 0.00 EAQ-00 | 0.26 64 246
EAQ-10 4.60

EAQ-11 6.08
AKN-1 434 0.65 2.60 831
AKN-2 432 0.62 3.44 604

Figure 5.2.7 a) XRD from 2 Scratch Hill samples b) Rock-Eval data ¢) Mercury-TOC data
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Figure 5.2.8 Regional correlation diagram for Arkansas Novaculite and Woodford Shale.
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There are several features of the Scratch Hill section worth highlighting. First, there very little
true novaculite (see inset 5.2.5a) but rather chert in the section. Second, as at other novaculite
section such as Caddo Gap, AK, bed coloration the Scratch section appears to record more oxic
bottom water conditions than in the Woodford. The fact that the AKN section records
predominately oxic deposition, as opposed to the anoxic to dysoxic conditions in the Woodford,
poses the question as to the nature of the Late Devonian to Early Mississippian oceans in the

Midcontinent region.

Three, the exception to this is two organic-rich black shale and chert intervals in the upper part of
Unit 2, Late Frasnian(?). These intervals are in the correct stratigraphic position of correlate to the
Kellwasser intervals in Europe and Morocco; events that may record volcanogenic mercury
poisoning (Racki et al., 2018). Although high Hg concentrations occur at Scratch Hill the TOC-

normalized data are ambiguous in this regard. However, we regard the section as under sampled.

Fourth, there are several
discrete thin beds rich in
nodules, that may represent
silicified phosphate nodules
(Figure 5.2.9). These beds

occur only in the black shale-

chert interval, which may have
implications about the redox
conditions necessary for nodule

nucleation and growth.

Figure 5.2.9 Probable silicified phosphate nodule in black siliceous mud rock.

Clearly Scratch Hill is an important section deserving further work including but not limited to
detailed gamma ray logging supplemented with hand-held XRF, thin section petrography, and
better geochemical characterization. Understanding this section may be key to understanding the
depositional conditions and model of the Woodford Shale.
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5.3 Additional Woodford sections in Arkoma Basin: There are at several sections of
Woodford in the Arkoma basin in this guidebook (Figure 5.3.1).
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Figure 5.3.1 3 Woodford sections in the Arkoma basin not covered in this guidebook, a) Clarita

shale pits (see Section 6.5), b) Pine Top (Hass-H from Hass and Huddle, 1965), ¢) Bengal section
(Hass and Huddle, 1965).
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Figure 5.3.2 a) Pine Top measured section, b) Bengal measured section (Siy, 1988).
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6.1 Regional Fracturing: Lithologically the Woodford ranges from siliceous argillaceous
mudrock to chert. Its overall high silica content is ultimately due to the abundance of radiolarian
tests. Although there are ductile thin bedded units, especially in the Middle Woodford, overall the
formation is mechanically a brittle and yields by fracturing as opposed to pressure solution and/or

calcite twinning which can occur in carbonates.
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Several of these outcrops in the Arbuckle Mountains have been studied by Ataman (2008) and
Ghosh (2019). We have also included our less rigorous observations at several locations on the
Lawrence uplift. These data show that there are two dominate regional fracture orientations, N30E
and E-W. The sixty degree angle between these trends strongly suggests these fractures represent
conjugate shear fractures (assuming Mohr-Coulombic criteria). This indicates a mean maximum
horizontal stress orientation of N60OE. This direction is oblique to regional macro structural trends

but is consistent with an overall compressive to transpressive tectonic regime (Perry, 1989).

Considering that most Woodford horizontal wells are drilled north-south, hydraulic fracturing on
those wells would appear to be more likely to potentially re-open the E-W fractures, degrading
stimulated rock volume. We suggest that understanding subsurface fracture density is a key

component to planning completions.
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6.2 Rare earth elements enrichment in Woodford phosphate nodules

The persistent occurrence of abundant phosphate nodules in the Upper Woodford Shale at or near
the Devonian-Carboniferous boundary is one of the striking features presented in this atlas (Figure
6.2.1a). Apatite, the dominate constituent of the nodules, accepts tri-valent REE ions into the
mineral lattice and thus can concentrate REEs. Thus, phosphate nodules in the Upper Woodford
represent a potential source for REEs that are critical for the manufacturing of generators, electrical

vehicles, and photo-voltaic cells.

Outcrop and core data presented in this atlas show that phosphate nodules in the Upper Woodford
extend over an area of at least 4,000mi? (Figure 6.1.1b). If subsurface data in central Oklahoma is
included (Kvale and Bynum, 2014) this area expands to 14,000mi? which is still a conservative
estimate because it does not include the subthrust extension under the Ouachita fold and thrust belt
(Figure 6.2.1). The primary Woodford phosphate intervals range from 3-15m in thickness, occur
at or near timelines related to intense faunal change, and have a variety of morphologies from
spherical to elliptical to discontinuous lenses (Figure 6.2.2). Discussion of the phosphate nodules
and associated REESs revolves around several factors and related questions: 1) Was deposition
environmental facies or an event? 2) What is the relationship between nodule morphology and

formation? 3) Did deep oceanic or terrestrial processes drive nodule development?
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Figure 6.2.2 Example of phosphate nodule morphologies and internal structure from several
localities discussed in this guidebook.

Phosphate nodules (PNs) of the Woodford have been the subject of three principal prior studies
(Siy; 1988; Kirkland et al., 1992; Boardman; 2014). Siy (1988) collected PNs and laminae from 6
localities, including the Pine Top and Bengal sites. Siy noted that the nodules have spherical to
elliptical to bedded morphologies and that many have internal concentric light and dark rings. Most
PNs have diameters between 2-3cm but range from 0.5 to 9cm. The nodules are primarily massive
cryptocrystalline fluorapatite and some have patches of acicular to prismatic crystals. Inclusions
of palynomorphs, radiolarians, and sponge spicules are common. Secondary pore filling cements
include amorphous silica, calcite, and pyrite. Compactional drape around the nodules shows
phosphogenesis preceded shale compaction. Kirkland et al., (1992) studied the geology and
organic geochemistry of the Woodford in the McAlister Cemetery Quarry (MCQ). Kirkland noted
most PNs have a core nucleus of a fossil fragments and that the nodules tended to be spherical
with little difference in mineralogy between the distinct light and dark concentric rings, which

were interpreted to result from changes in ocean geochemistry and/or microbiology during growth.
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Boardman’s (2012) detailed petrographic and geochemical study of the PNs from the 135-N and
the MCQ locations defined 5 types of nodules based on morphology, internal organization, and

degree of radiolarian preservation (Figure 6.2.3a):

A) Circular: well-defined, concentric rings, well-preserved radiolarians.

B) Elongate: well-defined, continuous rings, well-preserved radiolarians.

C) Elongate: poorly-defined and discontinuous rings, poorly preserved radiolarians.
D) Elongate: no apparent internal ring structure.

E) Circular: no apparent internal structure.

Boardman (2012) documented that types A and B are dominate at the MCQ, whereas types C, D,
and E are more prevalent at 1-35N. High definition XRF elemental analyses (3mm diameter spots)
along transects across 22 bisected PNs established that the darker rings are enriched in Mo, V, and
U (Figure 6.2.3b). Boardman interpreted the well-organized, spherical nodules with well-
preserved radiolarians at MCQ to reflect stable conditions in deeper water compared to eliptical
nodules at 1-35N and proposed that nodule morphologies were controlled by differences in water
depth. Elemental data were interpreted as recording oscillating sea water chemistry, but it is not
established whether elemental variations resulted from changes in redox conditions or temporal

differences in the concentration of metals delivered to the basin.
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REEs and Trace Elements in Woodford Phosphates: We collected 19 nodules from from the Upper
Woodford at 6 different locations, 1) MCQ, 2) 1-35S, 3) 1-35N, 4) Wyche Quarry (WQ), County
Pit, and Hass-G. These locations represent sites progressively closer Latest Devonian shorelines

(see Figure 6.2.1a). Each sample (~51gm) consisted of several nodules taken from the same bed
set. At WQ we collected additional through a stratigraphic succession from rounded to elliptical
nodules to lenticular thin phosphorite beds (Figure 6.2.2 center top photo) . Encasing mudrock was
chiseled away from the phosphates which were then lightly scrubbed in purified water. The
samples were sent to ALS Geochemistry where they were crushed, pulverized, subjected to the
lab’s standard 4 acid digestion protocol, and analyzed by ICP-MS for 60 elements including the
14 REEs.

The plot of REEs in the PNs, normalized to North American Composite Shale (McLennan, 1986)
shows a 10-fold difference across our locations (Figure 4a). All samples show a negative cerium
anomaly. Having an average of 1150ppm total REEs the WQ samples are the most highly enriched
samples. Particularly striking is the preferential enrichment in range of light to middle REEs in the
WQ samples. Most other samples have a fairly flat pattern across that range. MCQ-4 is not
enriched at all and has a flat pattern. The normalized REE distributions for the Woodford PNs for
each site plot as relatively distinct groups with minimal overlap. With the exception to the 1-35S
location more landward nodules are more enriched. We note that the WQ samples also have
anomalously high concentrations of Rb, Se, and TI, trace elements associated with continental
provenance, relative to the other locations (Figure 4b). A few samples from different localities

overlap.

The biostratigraphically constrained zone of REE enriched PNs at the Devonian-Carboniferous
boundary extends the length of the study area. At 135-N we interpret the unusually thin nodule-
rich interval (2m) as a concentrated lag deposit at the top Woodford unconformity (Figure 6.2.2¢c
upper right photo). The 135-S location is along strike from fracture filled with hydrothermal
mineralization in a Woodford core in the Ardmore basin (Roberts, 2017). Siy (1988) noted that
some altered, silicified, nodules carried lower REE concentrations. As a group, our distributions
are similar to unpublished data from the Woodford and time correlative sections in Chattanooga
Shale (Figure 6.2.4) and are within the Devonian secular variations in phosphate REE

concentrations (Emsbo et al., 2015).
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Figure 6.2.4a) Normalized REE plot of nodules from this study (North American Composite Shale,
(McLennan, 1989). Shaded polygons are normalized REE plots from the Devonian-Carboniferous

sections of Woodford and Chattanooga Shale, courtesy of Pat McLaughlin. Inset shows mean and

standard deviation (SD) of total REE concentrations by site. 4b) Average concentrations of

selected trace metals from Wyche and the combined values from the 3 other locations. 4c) Cross

plot of La vs. Ce from nodules of this study, 4d) Cross plot of Se vs. Ce from nodules in this study
4e) NACS-normalized REE plots from the Arkansas Novaculite at Caddo Gap, AK (Caines, 2019).
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Our data shows that sites with the highest REE enrichments (particularly on the Lawrence Uplift,
Figure 6.2.4a inset) are those closest to the paleo-shoreline. The samples in stratigraphic
succession at WQ show no systematic relationship between REE enrichment and phosphorite
morphology. This overall up-dip REE enrichment is consistent with that fact that REEs in shales
are ultimately derived from continental provinces (McLennan, 1986). Additionally, several trace
elements associated with continental provenance, Se. Rb, and TI, are also enriched in the WQ
samples (Figure 6.2.4c). These relationships indicate that the REE and some trace element
concentrations in the U. Woodford phosphates were influenced more by relative proximity to
exposed areas in the hinterland than by water depth. Poly-aromatic hydrocarbon biomarkers in the
Upper Woodford at the McAlister Cemetery Quarry (Section 4.1) indicate contribution of organic
matter from forest fires in the hinterland (Philp and DeGarmo, 2020). Widespread Famennian
wildfires and the demise of Late Devonian forests could have provided a massive influx of
phosphorus to the Laurentian epeiric seas, possibly driving deposition of phosphatic intervals in
the Woodford, New Albany, and Chattanooga shales (Section 1.2, figure 1.2.2).

Bentor (1980) noted that Ce anomalies can serve as a measure of the relative influx river water vs,
deep ocean water. Ce is unique among the REE in having two valence states +3 and +4. Ce*? like
the other REE can substitute in trivalent sites apatite. Ce** readily combines with Mn and is readily
removed from oxygenated bottom waters characteristic of oceanic upwelling zones. Although
Siy’s (1988) did not analyze a full REE suite, she established that La and Ce were positively
correlated and interpreted the enrichment of La over Ce as evidence for precipitation from deep
marine, reduced, bottom waters. Like Siy (1988), we note a strong positive correlation between
Ce and La (R?=0.96) with WQ samples being more enriched in both elements than all other
samples. Because La is not sensitive to redox conditions, the fact that La and Ce are so strongly
correlated implies that their relative concentrations were not a function of changing redox
conditions but from mixing bottom water with river input. This is consistent with biomarker
geochemistry indicating that the Woodford was deposited in a poorly-mixed, highly stratified
water column (Connock et al., 2018). In light of the more oxic sediments at the Scratch Hill
(Arkansas Novaculite; Section 5.2), it is interesting that localities in the Arkansas lack significant
negative cerium anomalies (Figure 4e, Caines, 2019), a problematic observation for model that
invoke the encroachment of anoxic deep water on to the shelf as a mechanism to drive mass

extinctions (Section 6.3).
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6.3 Mass Extinctions, Volcanism, and Mercury Anomalies: Deposition of the Woodford spans
multiple, closely-timed Late Devonian mass extinction events that when considered together
constitute one of the 5 major global mass extinctions events. (Figure 6.3.1). The other 4 global
mass extinctions tended to occur as single events. The clustering of multiple extinction events in

Late Devonian raises the question of the interaction of multiple driving mechanisms.
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Figure 6.3.1 Phanerozoic Global extinction record using Family level marine family extinction
rates families/myr (Mcleod, 2013). Devonian extinctions highlighted: 1, 2 Lower and Upper
Kellwasser (Frasnian/Famennian), 3-Dasberg event (middle Famennian, 4- Hangenberg D/C

Devonian/Carboniferous boundary.

The end Frasnian Stage occurred at the sea level highstand at the climax of the transgression phase
of the Kaskaskia Super Sequence. The Frasnian-Famennian (F/F) Stage boundary extinctions are

often referred to as the Kellwasser event named after two organic-rich black shales in the Harz

Mountains, Germany that have strong positive §*3Corganic anomaly (Buggisch, 1991). The F-F

boundary is dated at 371.93-371.78 Ma (Percival et al.,, 2018). The F-F extinctions
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disproportionately degraded marine life on the tropical shelves; strongly reducing armored fish
(placoderms), goniatite groups, many conodont species, groups of trilobites & brachiopods,
colonial corals, and stromatoporoid siliceous sponges. At this time reef ecosystems were
eliminated. Interestingly, there was little impact on terrestrial plant diversity.

The Dasberg event is a lesser extinction event that impacted conodonts. Black shales associated
with the Dasberg event have a slight positive §**Corganic anomaly and are associated with a modest,

but rapid, marine flooding event (Figure 6.3.2). The §*3C anomaly in the Wyche core may record

the Dasberg event rather than the F/F boundary (see Section 2.1).

The end Famennian Stage extinctions, also known as the Hangenburg Event, define the Devonian-
Carboniferous (D-C) boundary. Like the F/F extinction, the Hangenberg event strongly affected
shallow marine life, but also had an impact on terrestrial plant diversity. The Kellwasser and
Dasberg events are associated with rising sea levels, whereas Hangenberg event occurred during
a sea level fall.

The Devonian Period is one of the most dynamic intervals time in the evolution of Earth’s
biosphere and atmosphere (Figure 6.3.2). The most important event was the widespread
colonization a diverse assemblage of vascular plants, such as lycophytes and ferns that formed the
planet’s first forests leading to higher levels of photosynthesis with a resultant massive drawdown
in CO2 (Pawlick et al., 2020). Atmospheric oxygen levels were low, ~15%, but increased to ~20%
by the at the end of the Period. The development of thick soils and increased chemical weathering
(see Figure 1.2.3) provided more nutrients into rivers, such as phosphorus, and may have helped
trigger eutrophication and subsequent anoxia on the shelf (Algeo and Scheckler, 1998). Short
terms sea level fluctuated rapidly which represents an important control of the shifting of facies in
the epeiric seas of Laurentia. Very rapid extinction rates, high extinction percentages, and global
geochemical & lithofacies correlations demand an explanation with respect to causal mechanisms

that carry implications of an external triggering mechanisms.

Proposed causal extinction mechanisms fall into two categories. Terrestrial causes, including
massive Large Igneous Province (LIP) volcanism, changes in ocean circulation patterns, and
glacio-eustatic sea level changes, ultimately fall under the broad umbrella of tectonics. Potential
extra-terrestrial causes include boloid bombardment (e.g., Alamo, Siljian, impacts; Sandburg et
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al., 2002) and X-ray bursts from super novae (Fields et al., 2020). Attribution to the Siljan and

Alamo impacts appears unlikely as they predate the Late Devonian extinction events. Globally

the upper Devonian section at the F/F and D/C boundaries with elevated mercury concentrations

(Figure 6.3.3) have been interpreted to record volcanic-triggering of mass extinctions via delivery

of Hg-rich aerosols to shallow seas (Racki, 2020; Rakocinski, et al., 2020).
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There are three main mechanisms that can supply Hg to marine sediment (Grasby et al., 2019) 1)
dispersed atmospheric deposition from volcanic aerosols, 2) focused terrestrial influx from river
systems that may locally overwhelm any signature of atmospheric-sourced Hg in nearshore areas,
3) Hg released from submarine volcanics. For the Late Devonian, distinguishing terrestrially
derived Hg from wildfires and erosion from Hg in volcanic aerosols is particularly problematic.
Use of mercury stable isotopes is a promising discriminator of volcanic vs. sedimentary sources,
but further calibration is required to account of mass-dependent and mass-independent isotopic

fractionation in its bio-geochemical chemical cycle (Grasby et al., 2019).

Terrestrial vs. volcanic inputs are not mutually exclusive and aerosols fall out on land as well as
the oceans. Thus, one of the major difficulties when interpreting Hg data is considering the
potential of large volumes of terrestrial input (Chattanooga Shale / Zheng et al., 2023) to
overwhelm volcanic aerosols in the marine environment (Horn River Group / Kabenov et al.,
2023). To this end the use of the biomarker coronene, a 6-ring polyaromatic hydrocarbon that is
only known in association with large igneous province emissions and extraterrestrial impacts,
represents a promising tool to resolve the relative inputs of terrestrial vs. volcanogenic mercury
(Kaiho et al., 2021).
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Figure 6.3.3 Simplified Late Devonian tectonic reconstruction, oceanic ridges in double red lines,
subduction zones heavy black lines with teeth on upper plate (Golonka, 2020) LIP and Devonian
mercury anomalies (Racki, 2020; Rackocinski, et al., 2020; Zhang et al., 2021, Zheng et al., 2023,
Kabanov et al., 2023)

We have included herein Woodford Hg and Hg/TOC data at Haas-G, YMCA Spillway, 135-S, and
McAlister Cemetery Quarry (4 sites in the Arbuckle region) and a single site, Scratch Hill, in the
Arkansas Novaculite. The data from the Arbuckle region show the D/C boundary has a strong
anomaly, whereas the F/F is much subdued (Figure 6.3.3). These data show proof of concept, but
a tighter sampling grid and additional geochemical analysis (biomarker and trace metals) are
required before stronger statements can be made as how the Woodford intervals relate to the global

picture of volcanically-triggered Devonian mass extinctions.

Further studies should include the Arkansas Novaculite, which would complete a shelf to deep
basin transect. If the fully array of analytical tools can be applied such work could not only help
resolve the issue of terrestrial vs. volcanic-sourced Hg, but would improve our basic understanding

of Devonian to Early Mississippian ocean redox geochemistry.
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Figure 6.3.3 Woodford mercury data across the F/F and D/C boundaries in the Arbuckle region.
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6.4 Paleogeography/ Ocean Circulation/ Depositional Environment

The organic-rich Woodford Shale was deposited during a 15-20my interval during a dynamic
period for sea-level, climate, and tectonics. Demaison and Moore (1980) in their classic paper
“Anoxic Environments and Oil Source Bed Genesis”, outlined several sets of paleogeographic and
paleo-oceanographic circumstances in which oil-prone source rocks beds can form: 1) silled basins
2) upwelling environments, 3) the open ocean. Global climatic events during Woodford time,
including the Hangenberg, Dasberg, Annulata, and Upper and Lower Kellwasser oceanic anoxic
events, occured in different paleogeographic and sequence stratigraphic settings and may have
been global in nature but inconsistent in cause and effect (Kaiser et al. 2016, Sahoo et al. 2023,
Carmicheal et al. 2019). It is unlikely that any single model can encompass the entire depositional
framework of the Woodford Shale.

Many excellent, data-rich, studies of the Woodford evoke a simplistic cause for organic carbon
sequestration, source rock deposition, but rarely do these papers address multiple hypotheses head
on, differentiate different depositional environments for different parts of the Woodford, or address
the sheer extent and frequency of black shale deposition in the Woodford and Laurussia interior
seas as detailed in figure 6.3.1. Many of these studies fail to take a regional perspective, instead
focusing on a specific outcrop or modern sub-basin without considering the whole system; notably
the downdip oxygenated deposits of the Scratch Hill outcrop (5.2) was well as the upper reaches
of the system at the Wyche pit (Stop 2.1).

We also wish to add several cautionary notes regarding the use of analogs to explain deposition of
the Woodford. First, although anoxic/euxenic conditions occur in different settings their use as
analogs for the Woodford will always suffer from the fact that there are no modern epeiric seas.
For example, Turner and Slatt (2015) use the Framvaren Fjord (Norway) and the Cariaco Basin
(offshore Venezuela) as modern analogs for the Lower and Middle-Upper Woodford, respectively,
without addressing how one can transition between these vastly different settings. Likewise, one
must consider relative differences in paleogeography for upwelling models. Reconstructions for
the Rheic Ocean at 360Ma and 345Ma show east-west striking coast lines and a south-dipping
subduction zone (Figure 6.3.1a). From this geometry not only is it problematic to source polar
bottom waters for upwelling (Figure 6.3.4), upwelling should occur from the deepest waters,

presumably from the trench along Gondwanaland, not along the Laurentian margin. For the 360-
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345Ma interval the Rheic Ocean narrowed about 250k which yields a very slow the convergence

rate, ~1.7cm/yr. We suspect that the ocean was wider and the convergence rate higher.
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Figure 6.3.1 a, b) Paleogeographic/tectonic reconstructions at 360ma- low rising sea level and 345ma-
high falling sea level. (McGlannan et al., 2022) c) Paleogeographic arrangement at the F/F boundary
showing extensive interconnected seas and global source rock deposition of the Kellwasser beds (Blakey,
2016; Carmichael et al., 2019)

188



Connock 2018, Cardott and Comer 2021, and others point to a silled basin and give evidence
such as gypsum crystals indicating hypersaline conditions, evidence of a stratified water column,
and the development of photic zone euxenia in addition to high TOC to justify a restricted basin
many of which are summarized in figure 6.3.2. Other papers such as Brito (2019) focus on small
sub-basins despite the regional extent of the Woodford Shale. While pointing out that many
features recognized in Oklahoma paleogeography unrelated to Pennsylvanian thrusting were
present in the Devonian (Cardott and Comer 2021; and Kvale and Bynum 2014) these papers,
amongst others, do not locate a specific basin wide sill often pointing vaguely towards an
offshore island arc and encroaching Gondwana shown in paleogeographic maps (Figure 6.3.1,
Blakey 2016). Often the strike sections shown to illustrate the highs and lows of the Anadarko
basin, Nemaha uplift and Arkoma basin, fail to caption the down dip open connection to the
Rheic Ocean or lateral limits to the bathymentric highs.

Trade Winds
4 4

» bl \ ' %4 “ 4
SOUTH : s ﬁ g * NORTH
(Rheic Ocean) % : 5

E ] Evaporation - (Craton)
Evaporation
<« - <« | —— < —— Tl e — 4 — «— 1 ] <
“\ N ~ “\ \ Wind-driven surface current ‘\ G m‘\ \m‘\
Coastal Upwelling b \\'}32\\ High-Biological Productivity 2N
j / / j L Nutrient-rich water / & /A e
>

A
—> —> —— —) —_ ' > > SN, P ————— RS

~
Y
..................... S S

y
*

$>35%

; Hypersaline Anoxic Intrabasinal
haly Bottom Water Platform

Cratonic Basin
\ Cratonic Basin

No such barrier has been definitively identified

Oxygen-
Minimum
Zone

Oxygenated
Deep-Ocean
Water

Figure 6.3.2 Block diagram with extreme vertical exaggeration emphasizing paleogeographic
restriction (Cardott and Comer, 2022). The cratonic basins indicated (Anadarko and Arkoma)
would have been open to the south into the Rheic Ocean.

Upwelling is commonly cited as the chief culprit in eutrophication and preservation of TOC in
the Woodford Shale (Boardman, 2012, Cardott and Comer, 2021, Kvale and Bynum, 2014).
Upwelling occurs when winds and currents pull cold, oxygenated, nutrient-rich water from the
oceans into shallow environments on the shelf. This results in excessive biological productivity
in surface waters driving reducing conditions in bottom waters, the development of radiolarian

rich sediment leading to the formation of chert, and the deposition of phosphate nodules at the
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up-dip extents of the upwelling zone as detailed in figure 6.3.3 (Wignall 1994). Currently, this
commonly occurs at low latitudes along the western margins of continents, conditions that fit the
Woodford Shale (Kvale and Bynum, 2014; Boardman 2012; Siy 1988). Unfortunately, modern
analogues for this theory, offshore of West Africa and Peru (Demaison and Moore 1980; Kvale
and Bynum 2014), exhibit very different geometries than the Woodford. These modern systems
have significantly narrower shelfs that strike north-south over vast distances (Ulrike et al. 2016)
as opposed to wide east-west oriented epeiric seas of the late Devonian Figure 6.3.3. The
advancement of nutrient rich water across such a broad expanse of not only the Woodford but the
contemporaneous Chattanooga, Floyd Shales, New Albany Shale, Antrim, Huron, Rhinestreet,
and Lower Bakken Shale is problematic as these nutrients are consumed driving large expanses
of organic shale deposition in several contiguous basins with different tectonic settings. These
problems are further exacerbated by the different sea level conditions of the various oceanic
anoxic events where sea levels are overall transgressing at the Lower Woodford F/F boundary
(Kellwasser events (Carmicheal et al. 2019)) and falling during the Hangenberg events at the
D/C boundary (Hangenberg events (Kaiser et al. 2016)) of the Upper Woodford. Also given the
prevalence of phosphate and chert these models appear to apply more to the Upper Woodford
than the Lower Woodford.

\LO

Ngsh
vre Wings« __
v - \\

-:r:.u waters -o.._:i":“" \\/-

Mass flow deposits

Phosphate-rich
sediments
Organic-rich deposition

Winnowing
Non-deposition
EI Upper dysoxic waters

Cold, nutrient-rich Z Lower dysoxic/suboxic waters
oxygenated deep water

Figure 6.3.3 Block diagram from Wignall (1994) Illustrating zones of oxygenation as well as
phosphate deposition and continental input. This model is strongly weighted towards the modern
day Peruvian upwelling zone.
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Figure 6.3.4 a) Boardman’s (2012) application of Heckel (1977) upwelling model b) Scale of

Peruvian Oxygen Minimum Zone (Ulrike et al., 2016) compared to minimum distribution

Woodford phosphates nodules




The valid alternative to eutrophication from upwelling is eutrophication from terrestrial sources.
The implication here is that land derived organics and/or iron-bearing dust fed algae blooms
resulting in the deposition of Type I and Il kerogen. This alternate model ties to changes in
weathering and nutrient delivery associated with the development of land plants (Algeo et al.
1995; see Section 1.2). Siy (1988) considered this in her analysis of the origins of phosphate
nodules in the Woodford before ultimately concluding that upwelling was more likely, however
she did not conclusively rule out a terrestrial phosphate source. However numerous authors have

found convincing evidence of terrestrial-sourced eutrophication.

1. Philp and Degarmo (2020) and Connock et al (2018) found evidence of forest fires in the
organic material from McAllister Cemetery (stop 4.1) and Wyche Quarry (stop 2.1).

2. Data presented in this volume and by Cullen (2020) have also found mercury anomalies
(section 6.4) equivalent in time and quantity to anomalies which Racki et al 2018 and
Rakocinski et al 2020 have attributed to volcanic triggers.

3. REE and other trace element data presented in this volume (section 6.2) is likely derived
from continental sources (McLennan, 1986) and the negative cerium anomalies in the REE
data suggest they were not from upwelling.

4. Sahoo et al (2023) attribute trace element accumulations, often linked to reducing conditions,
to continental input in the Lower Bakken Shale. Many of their interpretation could apply to
the work of Turner et al 2015, Ekwunife 2017, and others.

5. Cecil (2004) suggests that eolian dust could have seeded and supplied silica for both deep
and shallow water chert in the Devonian and Mississippian of Arkansas, Texas, and
Oklahoma.

The sheer size, variable conditions of deposition in the Woodford, and oceanic anoxic events
requires a deeper multifaceted approach to considering the depositional environment rather than
finding a single solution. This will mean looking beyond the petroleum system, considering
other attached basis and a 3D orientation along with connecting other data such as dC13 curves,
REE data, phosphate nodule data, and Hg data. While we have explored some of these we

believe that we have only begun to stack the building blocks of excellent previous research.
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As a working hypothesis based on limited data we suggest that that the Lower Woodford
Kellwasser events reflect restriction over pre-existing Hunton topography, whereas the Middle
Woodford and Lower Upper Woodford are dominated by eutrophication due to upwelling, the
upper most Devonian Woodford is dominated by land derived eutrophication, and the

Carboniferous Woodford is more of a classic grey shale.
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7.0 Three Notional Field Trips: This atlas guidebook represent a menu of outcrops that could be
served up for different field trips depending on the purpose, length of the trip, and number of
participants. Below are 3 notional trips- including one for a motor coach with 30+ participants.
Regarding logistics: 1) We recommend having pre-packed lunches. 2) Arbuckle Fried Pies (AFP)
is an excellent stop for bathrooms & short lectures and outdoor benches for lunch. 3) For overnight
stays, Sulphur is preferred for the shorter route (SH177) the Hunton Quarry Anticline. 4) We have
put the Camp Classen / YMCA stop last, after the McAlister Cemetery Quarry, to ensure sufficient
time at MCQ and to break up the ride back to Norman/OKC with a bio-break and a snack at AFP.

1 day

LARGE GROUP (~30)
Motor Coach

Wyche Quarry: Upper WDFD

U. Woodford/ PO nodules

Hunton Quarry Anticline HAQ

Full section

Heart of the Arbuckles

L. WDFD fractures

1-35S (?)

WDFD-HNTN, U WDFD D/C

McAlister Cemetery Quarry

Full section

OV WN -

Camp Classen

L. WDFD strat, F/F boundary

[N

SMALL GROUP (~20)

Norman

Miles

Norman-Ada

63

Ada-Atoka

48

Atoka-Sulphur

72

Sulphur-HAQ

12

HAQ-AFP

12

AFP-MCQ

30

MCQ-Norman

85

Atoka

2 |Hass G WDFD-Welden, D/C

3 |Woodford Log Fractures, petrified log
4 |Scratch Hill (Atoka) Arkansas Novaculite

5 |Wapanucka Upper Woodford (Miss)
6 |Hunton Quarry Anticline HAQ |Full section

7 |Heart of the Arbuckles L. WDFD fractures

8 |[I-35N U. WDFD nodule lag

9 |I-35S WDFD & Sycamore

10 |McAlister Cemetery Quarry  |Full section

(IR
=

Camp Classen

L. WDFD strat, F/F boundary

Norman

Day Vans / SUVs
1 |Wyche Quarry: Upper WDFD |U. Woodford/ PO nodules
2 |Hass G WDFD-Welden, D/C =
3 |Woodford Log Fractures, petrified log
4 |Hunton Quarry Anticline HAQ |Full section
5 |Heart of the Arbuckles L. WDFD fractures
6 [I-355(?) WDFD-HNTN, U WDFD D/C
7 |McAlister Cemetery Quarry |Everything
8 [Camp Classen L. WDFD strat, F/F boundary Atcka
2 SMALL GROUP (~20)
Days Vans / SUVs
1 |Wyche Quarry: Upper WDFD |U. Woodford/ PO nodules

Figure 7.1 Three examples of the many different possible field trips that may “...to lead you to

an overwhelming question. Oh, do not ask, "What is it?" Let us go and make our visit.” The

Love Song of J. Alfred Prufrock / T.S. Elliot
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